实对称矩阵的秩小于阶数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:28:47
是.A是对称矩阵,则A^T=A所以(A^n)^T=(A^T)^n=A^n所以A^n仍是对称矩阵A是实矩阵,显然A^n也是实矩阵所以A^n是实对称矩阵.
可以用Gauss消去法证明可以合同对角化,然后只要加一句可逆变换不改变秩即可.如果还不会看下面的提示:取一个非零2阶主子式,若其对角元为0则用[1,1;-1,1]作用上去,这样它至少一个对角元非零.不
不是的.再问:�����أ������Ҹ�������〜������ô��Ӧ�ã�再答:A=(1/3)*12-22-2-1212A�������,�����ǶԳƾ���
选A. 设A^-1的特征值为a1,a2,...an.则A的特征值为1/a1,1/a2,.1/an.因为所有an都大于0,所以所有1/an大于0.所以选A 另外B项如果改成a11>0以及各阶行列式的
是的这是因为对称矩阵的和仍是对称矩阵
线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T
你是说P^-1AP=对角矩阵中的正交矩阵P吧它不唯一.P的列向量来自相应齐次线性方程组的基础解系而基础解系不是唯一的所以P也不唯一
因为矩阵的加法运算满足交换,结合,有零矩阵,有负矩阵矩阵的数乘运算也满足相应的4条运算性质所以若证明n阶对称阵对矩阵加法及矩阵的数乘构成数域R上的线性空间,只需证明n阶对称阵对矩阵加法及矩阵的数乘运算
没这个结论.反例A=[12;25],B=[1-1;-12]都是实对称可逆矩阵但AB=-13-38不是对称矩阵.再问:那么n阶实对称可逆矩阵集是不关于乘法封闭的?再答:对再问:谢谢老师。
记E(ij)是第i行第j列元素为1,其余元素是0的矩阵,则E(ij)+E(ji),1
关于这个我建议你应该仔细看一下矩阵秩的定义,对于3阶实对称矩阵来说,矩阵秩表示它至少有一个2阶子矩阵的行列式为0,而3阶子矩阵即矩阵本身的行列式为0再问:一下子忽略了定义。
我记得应该是特征向量正交和规范矩阵是充要关系.不一定是实对称.当然反过来是对的(谱分解定理)
由于A为实对称矩阵,所以存在正交矩阵U,使得U'AU=B(‘表示转置,B为对角矩阵),则A=UBU',故α’Aα=α'UBU'α=(U'α)'B(U'α)=0,令β=U'α=[b1,b2,bn]',则
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
设矩阵A是m行、n列的那么A就是m行、n列的矩阵,假定:m>=n,那么矩阵A的秩:r(A)
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
由于实对称矩阵的k重特征值有k个线性无关的特征向量而与a正交的线性无关的特征向量恰有两个所以与a正交的的向量必为2重特征值3的特征向量
必要性:(1)AB是对称矩阵=>(AB)'=AB(2)又(AB)'=B'A',且A,B为对称矩阵=>A'=A,B'=B故(AB)'=B'A'=BA由(1)(2)知AB=BA充分性:AB=BA,而A,B