实对称阵K重特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:33:36
证明:由A,B是n阶实对称矩阵,A,B具有一个共同的k重特征值λ知A,B的属于特征值λ的线性无关的特征向量必有k个设a1,...,ak是A的属于特征值λ的线性无关的特征向量b1,...,bk是A的属于
首先实对称阵相似于对角阵且特征值为实数只需证明(1)次对角元全非0时所有特征值2,2不同就行了这是因为我们可以把原矩阵分块成一个对角阵和一个实对称三对角矩阵(设阶数分别为s,t)使得这个子阵的的次对角
特征向量是有时正交有时不正交的.再问:那么什么情况下正交,什么情况下不正交啊,有规律吗?再答:只要是两重以上的特征值,正交和不正交的特征向量都是存在的,任何时候都可以找到正交和不正交的特征向量
如果给一个对称矩阵,那么它的特征值都是实数,而且它的特征向量相互正交.这个定理的相关证明你可以参考任何一本线性代数的教科书.这个定理中的一个结论是证明这个命题的关键.如果这个对称阵的所有元素都是可微函
设该矩阵为A,比如t为特征值,K重特征值的定义是什么,就是该矩阵的特征多项式含有根t的重数为K.设t为K重特征值,设t对应的线性无关的特征向量个数为m,那么以这m个向量延拓成为线性空间的一组基,那么可
设A是一个n*n的实对称矩阵,那么AX=aX(这里a是一个复数)那么两边同取共轭,得到conj(AX)=conj(aX)=conj(a)conj(X)因为A是对称的所以conjA=A成立,那么Acon
昨天刚考过矩阵,今天全忘了.
n=1的时候最简单n=2的时候取两个对角元一样大的对角阵,用平均值不等式验证这时候达到最大值n>2的时候不存在最大值,因为可以让前三个对角元取成-t,-t,N+2t,余下的元素都是0,这样当t->+o
正规矩阵A满足:1.A'*A=A*A'2.A合同于对角矩阵,即存在酉阵Q使得:Q'*A*Q=D,Q'*Q=E(单位阵)P.S:实对称也好,正交阵也好,都是实域中的正规矩阵.再问:哦哦,谢谢你的耐心解答
http://zhidao.baidu.com/question/517758517.html
(1)因为实对称矩阵属于不同特征值的特征向量正交所以[α,β]=-k+2-1+4=0得k=5.(2)[α,β+γ]=[α,β]+[α,γ]=0+0=0.
证明:设λ是实对称矩阵A的特征值,α是A的属于特征值λ的特征向量即有A'=A,A共扼=A,Aα=λα,α≠0.考虑(α共扼)'Aα=(α共扼)'A'α=(Aα共扼)'α=((Aα)共扼)'α所以λ(α
解:由已知中的等式知-1,1是A的特征值,且(1,0,-1)^T,(1,0,1)^T分别是A的属于特征值-1,1的特征向量.因为r(A)=2,所以|A|=0.所以0是A的特征值.设a=(x,y,z)^
设原矩阵为A,相似对角矩阵为B,则存在可逆矩阵P,使得:B=P^(-1)·A·P由于乘以一个可逆矩阵,矩阵的秩不变,∴ R(B)=R(A)如果0不是该矩阵的特征值,则R(A)=R(B)=n所
因为是实对称矩阵,故2重特征值所对应的线性无关的特征向量的个数是2个
实对称矩阵的每个单特征值只有一个对应的特征向量.k重特征值有k个对应的特征向量.故实对称矩阵可以对角化.
你要清楚不同特征根的特征向量线性无关,A的所有特征根共n个,A为n阶矩阵,那么它的特征根共n个(k重根算k个).而A的特征向量为n维向量,可以用n个基表出.若应于特征值λ的线性无关特征向量的个数=k+
是的属于某特征值的特征向量的非零线性组合仍是其特征向量
如果n是矩阵A的阶数,那么0是A的n重特征值,k和重数没有什么关系再问:n为A的阶数,为啥呢,我觉得只有k重是零根,剩下的不一定是零根呢再答:如果A满足多项式f(A)=0,那么A的任何特征值λ都满足f