1 cosx平方分之一的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:09:18
(1-2的平方分之一)(1-3的平方分之一).(1-2011平方分之一)=(1-1/2)(1+1/3)(1-1/3)(1+1/3)……(1-1/2011)(1+1/2011)=1/2×3/2×2/3×
1、由于被积函数是奇函数,积分区间是对称区间,因此结果为0.2、∫[0--->a](a²-x²)^(5/2)dx换元法:令x=asint,(a²-x²)^(5/
第一个1/(x^2+2x+2)^0.5的定积分可以化简成1/((x+1)^2+1)^0.5,然后把(x+1)当成u,du/dx=1,所以du=dx,所以原式可以换成∫1/(u^2+1)^0.5du,这
∫sinx√(1+cosx^2)dx=-∫√(1+cosx^2)dcosx用y=cosx,有=-∫√(1+y^2)dy=-y/2*√(1+y^2)-1/2*ln(y+√(1+y^2))+c又y=cos
再问:非常感谢您的指点。
用万能代换∫1/1+cosxdx=∫1/(2cos^2(x/2))dx=1/2∫sec^2(x/2)dx=tanx/2+C
cos2x=(cosx)^2-(sinx)^2=2(cosx)^2-1(cosx)^2=(1+cos2x)/2再问:为什么cos2x=(cosx)^2-(sinx)^2再答:cos(A+B)=cosA
(x+sinx)dx/1+cosx通分=(x+sinx)(1-cosx)dx/(1+cosx)(1-cosx)=(x-xcosx+sinx-sinxcosx)dx/sin^2x分别展开.能行么,也许把
原式=1/3+1/15+1/35+……+1/9999=1/2x[(1-1/3)+(1/3-1/5)+(1/5-1/7)+……+(1/99-1/101)]=1/2x(1-1/101)=1/2x100/1
∫(sinx)^2(cosx)^2dx=1/4∫(sin2x)^2dx=1/8∫(1-cos4x)dx=1/8x-1/32sin4x+C再问:题目错了,应该是Sinx的平方乘以Cosx的三次方等于多少
万能代换t=tan(x/2),则x=2arctant,dx=2dt/(1+t^2),cosx=(1-t^2)/(1+t^2),所以∫dx/(cosx+3)=∫dt/(t^2+2)=1/√2×arcta
证:可见,左=1/(sinx)^2+1/(cosx)^2+1/(tanx)^2右=2+(tanx)^2只需证明:左=右即可.左=1/(sinx)^2+1/(cosx)^2+1/(tanx)^2=[(s
证明:∵1/(sinx)^2-1/(tanx)^2=1/(sinx)^2-(cosx)^2/(sinx)^2=[1-(sinx)^2]/(cosx)^2=(cosx)^2/(cosx)^2=1∴左边=
∫(sinx)^7•(cosx)^2dx=∫sinx•[(sinx)^2]^3•(cosx)^2dx=∫[(cosx)^2-1]^3•(cosx)^2d
积分(sinx)平方(cosx)5次方dx=积分(sinx)平方(cosx)4次方dsinx=积分(sinx)平方(1-(sinx)平方)平方dsinx=积分(sinx)平方(1-2(sinx)平方+
∫(cosx)^2dx=∫(1+cos2x)/2dx=π/4+∫(cos2x)/2dx=π/4+(sin2x)/4=π/4积分限没法写~总之都是从0到π/2
(1-2的平方分之一)(1-3的平方分之一)...(1-9的平方分之一)(1-10的平方分之一)=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/9)(1+1/9)(1-1/1
∫(sinx)^2(cosx)^5dx=∫(sinx)^2(1-(sinx)^2)^2cosxdx=∫(sinx)^2[(1+(sinx)^4)-2sin^2]d(sinx)=∫(sinx)^2d(s