1 lnx (xlnx)3的原函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:12:21
xlnx-x+c分部积分法∫lnxdx=xlnx-∫xdlnx=xlnx-∫dx=xlnx-x+c
设x=e^t,dx=e^tdt,lnx=t不定积分(x+(lnx)^3)/(xlnx)^2dx=(e^t+t^3)/(te^t)^2e^tdt=不定积分(1/t^2)dt+不定积分te^(-t)dt=
用你知道的说,就是y=lnx=lgx/lge.其中e为自然对数的底,约等于2.73.由上式,lnx与lgx单调性相同,在定义域(0,+∞)同为单调递增,而x在(0,+∞)上单调且不变号,则不影响lnx
有一些是特殊的,必须用这样的分部积分法来求解.再问:能把这种方法简单地说一下吗,我给分再答:哎呀我去,不好意思,我看错了,这不是分部积分,我2了。。。这个积分其实很有特点的,这就是一个普通的换元法,也
令t=(1-lnx)/(1+lnx)得lnx=(1-t)/(t+1)x=e^[(1-t)/(t+1)]所以f(t)=(1-t)/(t+1)*e^[(1-t)/(t+1)]即f(x)=(1-x)/(1+
(1)g'(x)=ln(x)-1,所以x>e时单调增,x
答:∫(lnx)^2dx=x(lnx)^2-∫x*d((lnx)^2)=x(lnx)^2-∫x*2lnx/xdx=x(lnx)^2-2∫lnxdx=x(lnx)^2-2x*lnx+2∫xd(lnx)=
y=xlnx-x+C
(lnx)'=1/x所以∫1/xdx=lnx所以∫lnx/xdx=∫lnxdlnx=(1/2)*(lnx)²+C
∫xf(x)dx=∫xd(xlnx)=x^2lnx-∫xlnxdx=x^2lnx-1/2∫lnxd(x^2)=x^2lnx-1/2x^2lnx+1/2∫x^2d(lnx)=1/2x^2lnx+1/2∫
=∫(1+lnx)/(xlnx)^3dx+∫1/[x(lnx)^3]dx第一个积分,令u=xlnx,du=(1+lnx)dx∫(1+lnx)/(xlnx)^3dx=∫1/u^3du=-1/2·1/u^
∫(f'(lnx))/(3x)dx=(1/3)∫df(lnx)=(1/3)f(lnx)+C(f'(lnx))/3x的原函数=(1/3)f(lnx)+C
分步求导,先对x求导,再对lnx求导
/>依题意f(x)=(xlnx)‘=1+lnx;∴f'(x)=1/x;f''(x)=-1/x²∫x²f''(x)dx=∫x²(-1/x²)dx=∫(-1)dx=
(1)y=lnx就是y关于x的函数(2)求导得y=lnx+1(x>0,y>1)所以y=xlnx在定义域内为单调函数且y>1所以此函数为单调递增函数
d(xlnx)=(1+lnx)dx所以原式=∫(1+lnx)/(xlnx)^2dx=∫(1+lnx)/(1+lnx)(xlnx)^2d(xlnx)=∫1/(xlnx)^2d(xlnx)=-1/xlnx
原函数=∫lnxdx=xlnx-∫x·1/xdx=xlnx-∫dx=xlnx-x+C
∫sin(lnx)dx=xsin(lnx)-∫cos(lnx)dx=xsin(lnx)-xcos(lnx)-∫sin(lnx)dx2∫sin(lnx)dx=xsin(lnx)-xcos(lnx)∫si