1 n*ln(n) 敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:58:48
1 n*ln(n) 敛散性
级数n从1到无穷 ln(n*sin(1/n))判断敛散性

泰勒级数展开,sin(1/n)~=1/n-(1/n)^3/6=1/n-6/n^3,所以nxsin(1/n)~=1-6/n^2,所以ln(nxsin(1/n))~=-6/n^2,所以求和是收敛的,因为1

级数∑ln(n+1/n)的敛散性是什么,

由limln(1+1/n)/(1/n)=1有原级数与∑1/n有相同敛散性.所以原级数发散

级数的敛散性题目 Σ(1/n - ln(n+1)/n)的敛散性怎么判断?

由于当x趋于0时,lim【x-ln(1+x)】/x^2=lim【1-1/(1+x)】/2x=1/2,因此有1/n-ln(1+1/n)等价于1/(2n^2),故原级数收敛.

ln(1+1/n)

随着n的增加,ln(1+1/n)有界,并收敛于1/n

判断正项级数的敛散性(1/√n)*ln(n+1/n-1)

ln(n+1/n-1)=ln(1+2/n-1),n趋于无穷时,ln(1+2/n-1)1的时候级数收敛.所以原式收敛.懂没?

证明ln(n+1)

当x>0时,有个常用不等式:ln(1+x)

正项级数(n-√n)/(2n-1)还有1/√n*ln(n+1/n-1)还有√(2n-1/3n+2)的敛散性

第一个,2n-1~2n,所以(n-√n)/(2n-1)~(n-√n)/2n=1/2--1/2√n,因为1/√n>1/n,所以是发散的也可求极限,极限不是0.所以发散第二个,发散ln(n+1/n-1)~

求级数敛散性:Un=1/(n*(ln n)^p*(ln ln n)^p) 其中(p>0,q>0)

Un=1/(n·(ln(n))^p·(ln(ln(n)))^q).首先考虑通项为An=1/(n·(ln(n))^p)的级数.通项非负单调递减,根据Cauchy积分判别法,级数收敛当且仅当∫{10,+∞

∑1/ln(n+1)敛散性

正项级数,用比值审敛法:lim(n→∞)u(n+1)/un=[1/ln(n+2)]/[1/ln(n+1)]=lim(n→∞)ln(n+1)/ln(n+2)<1,级数收敛

∑1/(ln n)^n敛散性

这道题用根值法就能直接得出结论当n趋于无穷大时,lim(1/lnn)=0,根据根值法定义,当此极限小于1时,即可判定级数收敛.PS:根值法,又叫柯西判别法,在有些书中可能省略了,可以查看同济版高等数学

ln(1+n)

先考虑由函数y=1/x,x=1,x=n+1,y=0所围成的面积但在区间[i,i+1],有:S(i)=∫[i,i+1]dx/x∑[i=1,n]1/(i+1)=1/2+…+1/n+1/(n+1)∴1+1/

ln(2n^2-n+1)-2ln n.当n趋于正无穷是的极限

ln(2n^2-n+1)-2lnn=ln((2n^2-n+1)/n^2)=ln(2-1/n+1/n^2)--->2答案:2

n趋向于无穷大,lim n[ln(n+2)-ln(n+1)],

ln(n+2)-ln(n+1)可以化成ln(1+1/n+1),n趋于无穷大,则有1/n+1趋于零,所以limnln1,算得结果为0

求极限n【ln(n-1)-lnn】

以下各式省略lim(n→∞):n×[ln(n-1)-ln(n)]=n×ln[(n-1)/n]=n×ln(1-1/n)=ln[(1-1/n)^n]=ln{[(1-1/n)^(-n)]^(-1)}=1/{

ln(n-1)!=ln2+...+ln(n-1)

你都已经画好了,首先应该是从1积分到n,0那个瑕点积分是发散的,然后不等式右边你可看成是ln2为高,1为底的矩形面积,也就是你画的图中,在lnX曲线下的那些虚线矩形面积之和.类似的,不等式右边你可以看