对两组样品进行T检验显著性分析
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:35:26
t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性.各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系
两因素方差分析,可以用独立样本T检验啊,方差齐性和非齐性都是可以的
插入\函数\统计\TTEST
请给出原题再问:假设两组数据平均数为10,2,每组数据有3个值,标准差为0.03,0.01,计算两组数是否有显著性差异
你希望检验两种水平是否显著差异,还是检验22个指标间是否存在显著差异,还是两个都希望检验?并且你22个指标下有多少个数据啊?这些不知道的话,我不知道和你说用什么方法.如果还不太清楚,可以再联系我.
CORREL返回两个数据集之间的相关系数.公式为=CORREL(a1:aN,b1:bN)
t=-.688,df(自由度)=119,P=0.493>0.05,两者之间无差异(即无统计学意义).
哪个自变量比较重要吗?看标化系数再问:是标准系数?那回归方程的话最后是用非标准化系数的B还是标准系数呢?谢谢~~~~(>_
你要是就做两组的检验,t检验就行.第一组的第一个题和第二组的第一个题.你要是想做多组的,应该用方差分析了.就是ANOVA或者univarite~也在analyse里面
由于你的数据其中一组样本量为1,造成不能进行Levene检验,因此只能参考一下假定方差相同的sig.总的来说,这种数据的结果价值十分有限,因为样本过少,尤其是sig没有显著性的情况下更是如此,因为不能
两个数据比较大小就可以了.至少两组数据才需要显著性差异分析.
因为每次t检验都存在阿尔法错误,两次以上的检验总的错误概率累积起来就是一个相当大的数字查看原帖
显著性检验的基本思想可以用小概率原理来解释.1.小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中事件事实上发生了.那只能认为事件不是来自我们假设的总体,也就是认为我们对总体所做的
符号打不出
说简单点:看有没有研究的必要,只不过它进一步明确了变量的因果和然后VIF是检验自变量的共线性
录两个变量,一个变量身高,一个变量区别甲组和乙组分析的时候用独立样本T检验,测试变量是身高,分组变量是区别甲乙的那个变量然后执行就可以了相关分析只要按变量录就可以了,身高和爆发力、速度、耐力素质分别作
t检验是看有无差异,相关是看变化趋势是否有关联.但从你描述来看,你这个问卷本身不太有说服力啊.顾客本身对酒店,既评期望分,又评实际分,其中混淆因素太多,你无法解释清楚.而且22个题最好合并一下维度,否
不能用t-test检验差异性,但频率可以用交叉表中的卡方检验差异显著性.通过检验,结果为:X2=79.347,df=1,P=0.000<0.001说明,两种频率之间存在极显著性差异.
t值等于系数除以标准误,t值和p>|t|是一个意思,都是看回归结果是否显著,p>|t|越小越显著,对应的是10%、5%、1%水平显著.若是零,说明,在1%水平上都显著.