对矩阵A的转置求关于A的导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:12:13
重根对应的特征向量不一定是线性相关的.
特征值的顺序无所谓你给的两个矩阵是相似的P=001010100则P^-1AP=B与A相似,则与B也相似再问:谢谢您!
可以看成是求a分之一乘Lnx的导数结果是a分之一乘X分之一
首先要说明的是矩阵没有除法加减是会改变的,例如:A=E,A-E=0.A=-E,A+E=0,秩都变了,但乘完之后还是A,所以秩不会变
锐角三角函数公式sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-S
1-r3,r2-2r30λ-10510-21λ+123110-61r2-3r10λ-105103(3-λ)λ-30110-61λ=3时,r(A)=2λ≠3时,r(A)=3.
(A+A')'=A'+A=A+A',所以A+A'是对称的.(A-A')'=A'-A=-(A-A'),所以A-A'是反对称的.
矩阵Y对标量x求导: 相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 Y =
伴随矩阵A的伴随矩阵可按如下步骤定义:1.把A的每个元素都换成它的代数余子式;(代数余子式定义:在一个n级行列式D中,把元素第i行第j列元素aij(i,j=1,2,.n)所在的行与列划去后,剩下的(n
依次作:c2-λc1c3+c1c4-2c1同样方法用第4列的-1将第2行其余元素化为0然后c2+3c3即得
有非常多其中一个就是它本身定义:若B=C'AC,C可逆,则可以说明A,B矩阵是合同矩阵,C'比表示C转置
因为(AA^T)^T=(A^T)^TA^T=AA^T所以AA^T是对称矩阵同理,因为(A^TA)^T=A^T(A^T)^T=A^TA所以A^TA是对称矩阵.性质:(AB)^T=B^TA^T还有什么问题
矩阵是可以求导的,根据定义:设x是列向量,F(x)是关于x的函数,若存在函数G(x)使得F(x+dx)=F(x)+G(x)^T*dx+O(||dx||^2)(dx表示\Deltax,是和x同阶的无穷小
因为A-1A=E,所以A=(A-1)-1.因为|A-1|=-14,所以A=(A-1)-1=2321. …(5分)于是矩阵A的特征多项式为f(λ)=.λ−2−3−2λ−1.=λ2-
...哥直接按定义证阿(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'为对称矩阵(A-A')'=A'-(A')'=A'-A=-(A-A')所以A-A'为反对称矩阵
知识点:1.A是对称矩阵的充分必要条件是A'=A(A'表示A的转置)2.(AB)'=B'A'3.(A')'=A因为(A'A)'=A'(A')'=A'A所以A'A是对称矩阵.因为(AA')'=(A')'
A丨A*丨=丨A丨E,其中E是单位矩阵.只要求一下A的逆就行了嘛
证明:矩阵A可对角化,则存在可逆阵P,使P^(-1)AP=N为对角阵,P*[P^(-1)AP]*P^(-1)=PNP^(-1)A=PNP^(-1),A可逆,则A^(-1)=[PNP^(-1)]^(-1
由A是m阶正定矩阵,A的m个特征值都是正实数,设为λ1,λ2,...,λm.通过相似对角化,不难证明:I1)I+xA的特征值为1+λ1·x,1+λ2·x,...,1+λm·x;2)A(I+xA)^(-