对称矩阵线性空间维数和一组基
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:04:32
表示为:abcbdecef只有6个数字在变化,让一个数是1,其余为0,即可得到基,由6个矩阵组成.再问:一般的规律是什么?n(n+1)/2吗?再答:是的
P[X]n是数域P上次数不超过n的所有多项式的集合则1,x,x^2,...,x^(n-1)是P[x]n的一组基,其维数为n.
因为矩阵的加法运算满足交换,结合,有零矩阵,有负矩阵矩阵的数乘运算也满足相应的4条运算性质所以若证明n阶对称阵对矩阵加法及矩阵的数乘构成数域R上的线性空间,只需证明n阶对称阵对矩阵加法及矩阵的数乘运算
一组基:1,x²,x³,...,x^n所以维数是n
找丘维声的书吧,有这个证明再问:没有这本书,可不可以大概给个提示思路再答:再问:谢谢~我会仔细看的~
n阶对称矩阵的主控元素是主对角线上方(含主对角线)的元素记Eij为第i行第j列元素为1,第j行第i列元素为1,其余全是0的n阶矩阵则Eij,i
很简单,维数为4基,就这么取(打出来肯定提交不了,太多数字)2阶矩阵不是有4个元素吗?一个元素取1,其他元素取0.这样的2阶矩阵有4个,这就是他的基类似的你可以定义m*n矩阵的维数为mn,基的定义差不
记E(ij)是第i行第j列元素为1,其余元素是0的矩阵,则E(ij)+E(ji),1
既然都是n维空间了,一组基当然就是n个无关的向量.
首先,所有的对角阵之间是可交换的.齐次,任意一个矩阵A,若A可与所有的对角阵交换,可以证明A必是对角阵.而所有的对角阵的维数是n,基是第i个对角元是1,其余元素为0的对角阵,i=1,2,...,n.再
在空间中任取一个向量b加入这n个线性无关的向量ai(i=1,2,...,n)那么这n+1个向量一定是线性相关的故存在一组不全为0的ki(i=1,2,...,n)和c使得k1*a1+k2*a2+...+
一个基是diag(1,0,...,0),diag(0,1,0,...0),.,diag(0,0,0,...,1)维数为n
全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi
3阶与2阶不能加.所以得是同阶.n阶实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法构成R上的线性空间,(验证简单,自己完成).维数是1+2+……+n=n(n+1)/2.基可以用{Eij}1≤i≤j
由已知,a1,...,an线性无关所以r(b1,...,bs)=r((a1,...,an)A)=r(A)所以L(b1,...,bs)=r(A).再问:抱歉久等了!我想再问下:是不是因为“(b1,...
我只能告诉你方法了,因为这个过程相对比较复杂1、把这些向量作为列向量组成矩阵2、然后对其初等行变换,将其化成阶梯型矩阵(关于什么是阶梯型矩阵我想百度百科应该比我讲得详细3、然后确定的极大线性无关组就是
公理化定义给定域F,一个线性空间即(向量空间)是个集合V并规定两个运算:向量加法:V×V→V记作v+w,∃v,w∈V,标量乘法:F×V→V记作av,∃a∈F及v∈V.符合下列公
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩