将4个相同的球随机地放入4个不同的盒子,则恰有一个盒子空着的概率为多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:05:40
你的算法定了放的顺序,题意是一起放,不能这么算再问:一起放和一个一个放的不影响概率吧。就相当于把三个球同时抛出去,总有一个球先到,后面的球接着到吧。只是我是一个一个球地考虑而已。再问:请看评论。
楼上说法不对.照这样处理,只有连号的球有可能在一个盒子里.象1、3号在一个盒子,而2号不在这个盒子的情况无法实现这样考虑,由于每个盒子不能为空,所以先在10个球中抽取4个进行排列,保证每个盒子放一个球
将3个相同的球随机放入3个不同的盒子中总放法=3+3*2+1=10(相加的3个数分别表示3个球放在一个盒子的放法;从3个球总选1个放入一个盒子,剩余2个球放入一个盒子;每个盒子一个球)盒中球的最大个数
使用隔板法,C(9,3)=84选B
直接求可以求出来,分布列如下:X1234P10/206/203/201/20期望EX=1*(10/20)+2*(6/20)+3*(3/20)+4*(1/20)再问:答案不是这样,答案是25/16。再答
这个才是分步:第一步,第一个球去放,4第2步,第2个球去放,4第3步,第3个球去放,4总数为4*4*4=64P=4/64=1/16你的方法是分类第一类,单独的三个球去放C(1,4)C(1,3)C(1,
p(3个球在同一个杯子中)=4/4*4*4*4=1/64
由题意知X的可能取值为1,2,3,P(X=1)=A3443=616=38,P(X=2)=C14C23•343=916,P(X=3)=C1443=116,∴X的分布列为: X1 2&
分两步,3个球取两个,然后放入杯中.三个球取两个,C(3,2),两个的放入4个杯有C(4,1),一个的放入C(3,1)共有C(3,2)*C(4,1)*C(3,1)=36总的方法=4*4*4=64概率=
假设是在第一杯中有球的个数(其他杯情况一样)设X为第一杯中有球的个数的随即变量,第一杯中有球个数的分布律:X0123概率27/6427/649/641/64
4个不同的球放在3个不同的盒子里,共有放法:3^4=81种恰有2个和谐盒的情况有以下几种:(1)1,2号为和谐盒,放法:4*3=12(2)1,3号为和谐盒,放法:4所以,恰好有2个和谐盒的概率为:(1
球是否相同?盒子是否相同?按所有球不同,所有盒子不同计算:4个球随意放,每个球有4种方法,共有4*4*4*4=256种恰好空一个盒子:相当于将4个球放到三个盒子中,必有1个盒子放两个球,另两个盒子放1
三个球放入4个杯子,可以看成分三步完成,每步都有4种选择,所以共有4*4*4=64种放法三个球放进同一个杯子,有4种可能所以概率为4/64=1/16
不会是1/64应该是1/16因为第一个球一定会进其中一个杯子.剩下的就是其余的两个球进同一个杯子的可能了.比如ABCD杯.123球第一球就肯定会落A.B.C.D其中一个.如果落的是A杯.那第二杯就有1
k是大于1而小于n的,看来以我高一的水平根本没法动手额..
有3种情况,一:3个盒子各1球,二:有一个盒子2个球,三:有一个盒子3个球三种情况的总数分别为P(4,3)=24,P(4,2)XC(3,2)=,C(4,1)=4,因此3个盒子各1球的概率为24/(24
总共的情况有4^4种,是把相同的球都看成有不同编号的排列总数.空出一个盒子的组合有C(4,1)=4种.在三个盒子里放球的方式有211型,2里面实际上有C(4,2)=6种,然后211的排列有3!=6种.
(1)概率=3÷(3×3×3)=1/9;(2)概率=(3×2)÷(3×3×3)=2/9;(3)概率=1-2/9-3×2/(3×3×3)=1-4/9=5/9;很高兴为您解答,skyhunter002为您
由分步乘法原理可知,将完全相同的3个球随机地放入1,2,3号盒子中,共有33=27种放法,每种放法是等可能的.(1)记“3个球放入同一个盒子的概率”为事件A.3个球放入同一个盒子的放法有3种:3个球放
1.属于古典概率问题.事件总数为4×4×4(每个球都可以放进4个杯子中的一个有4种放法),事件X=1的放法为第2个球4个杯子中任一个,第2个球3个杯子中的一个...,总共4×3×2种,p(X=1)=2