将arctan1 x 1-x展开成x的幂级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:49:43
f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2
f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|
提示:先把f(x)写成:f(x)=-1/6*1/(1+x)-1/30*1/(1-x/5)1/(1+x)和1/(1-x/5)会展开吧.
就是先化成部分分式:令f(x)=x/[(x-3)(x+1)]=a/(x-3)+b/(x+1)去分母得:x=a(x+1)+b(x-3)即x=(a+b)x+a-3b对比系数得:a+b=1,a-3b=0两式
f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)
这是因为等比数列的公比不同1/(1-x)=1+x+x^2+...+x^n+...1/(1+x)=1-x+x^2+...+(-1)^n*x^n把第二式x换成x^2就可以了
X-x^3/3!+x^5/5!-……再问:幂级数的展开式好难,我连最基本的e^x,sinx都展不来,有什么技巧吗?
/>
先将展开成部分分式f(x)=-1/3*1/(1-x)+2/3*1/(1+x)那么1/(1-x)和1/(1+x)会展开吧下略x/(x^2+x-2)=-(x/2)-x^2/4-(3x^3)/8-(5x^4
一般的,f(x)在x=x0处展开成幂级数为:f(x)=f(x0)+f(x0)'(x-x0)+f(x0)''(x-x0)²/2+f(x0)"'(x-x0)³/3!+……+f(x0)(
(arctanx)'=1/(1+x^2)=∑(-1)^n*x^(2n),-1<x<1.arctanx=∑(-1)^n*x^(2n+1)/(2n+1),-1≤x≤1.xarctanx=∑(-1)^n*x
套用已知的展开公式.经济数学团队帮你解答.请及时评价.
将f(x)的导函数展开,再逐项积分即可到其展开式再问:那2sinxcosx怎么展开呢?再答:那不就是sin2x吗?
可以利用已知的展开式进行计算,如图.经济数学团队帮你解答.请及时评价.谢谢!
f(x)=(1-x)/(1-x)(1+x+x^2)(1-x)*[x^3+x^6+...+x^3n+...)]
F(X)=3/(X^2+X-2)=1/(X-1)-1/(X2)=-1/(1-X)-1/2*1/(1+X/2)函数1/(1-x)和1/1+x是一个公式,以及所述第二开关的xx/2.代入公式即可.收敛区域
第一种做法:f'(x)=1/(2+x)=(1/2)Σ(-1)ⁿ(x/2)ⁿ两边从0到x积分得:f(x)-f(0)=Σ[(-1)ⁿ/(n+1)](x/2)^(n+1)
解题过程请看附图.