将b用a1 a2 a3 a4线性表示

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:41:34
将b用a1 a2 a3 a4线性表示
求下列向量组的秩及其一个极大无关组,并将其余向量用极大线性无关组表示

(α1,α2,α3,α4)=6117404112-9093-6-12-4223r5+2r3,r4-r1-r3,r3-2r161174041-110-11-14202-84043r1-3r4,r2-2r

第二题,求下列向量组的秩及其一个极大无关组,并将其余向量用极大线性无关组表示,需要解题步骤,谢谢

再问:您看这样写行吗?再答:你的写法当然是行的,而且是常规做法。我的是简便方法。

已知向量组a1a2a3线性无关,向量组a1a2a3a4线性相关,向量组a1a2a3a4的秩为4,证明a1a2a3a5-a

Isuppose:"向量组a1a2a3a5的秩为4"insteadof:"向量组a1a2a3a4的秩为4"向量组a1a2a3a5的秩为4=>a1,a2,a3,a5线性无关a1a2a3a4线性相关=>a

线性代数:求一个极大线性无关组,并将其余向量用此极大线性无关线性组表示

A=[a'b'c'd']=1-15-111-233-18113-971-15-102-7402-7404-1481-15-102-7400000000103/2101-7/2200000000{a,b

如果向量b可以用向量α1,α2,...,αr线性表示,证明表示方法唯一的充要条件是α1,α2,...,α线性无关

反证法b=k1α1+k2α2+...+krαr(1)=m1α1+m2α2+...+mrαr(2)(1)-(2)(k1-m1)α1+(k2-m2)α2+...+(kr-mr)αr=0=>k1=m1and

向量组A线性无关,向量组A不能由向量组B线性表示,那么B是否线性相关,为什么?求最通俗易懂的解释

几个线性无关的向量就构成决定了一个几维的坐标系.所以如果向量组B的向量个数小于向量组A的向量个数.那么就无法判断B是否线性相关.所以如果向量组B的向量个数大于等于向量组A的向量个数.那么就B一定是线性

设向量组b1=a1 b2=a1-a2 b3=a1-a2-a3 b4=a1-a2-a3-a4 且向量组a1a2a3a4线性

(b1,b2,b3,b4)=r(a1,a1-a2,a1-a2-a3,a1-a2-a3-a4)=r(a1,-a2,-a2-a3,-a2-a3-a4)=r(a1,a2,a3,a4)=4,所以b1,b2,b

求下列向量组的一个极大无关组,并将其余向量用此极大无关组线性表示.

‍解:(a1^T,a2^T,a3^T,a4^T)=11111102100-3r1-r2,r2-r3001-10105100-3r1r3100-30105001-1所以a1,a2,a3是一个

求下列向量组的一个极大无关组,并将其余向量用此极大无关组线性表示 (线性代数类)

(a1^T,a2^T,a3^T,a4^T)=2-138111517-19110-211r1-2r2,r3-r2,r4-r20-31-2111506-2409-36r3+2r1,r4+3r1,r2-r1

判别向量组a1a2a3a4线性相关性,求它的秩和一个最大无关线性组,并把其余向量用这个最大线性无关组表示.

3-2r1,r4-r1112202150-2-1-500-22r3+r211220215000000-22r1+r4,r4*(-1/2),r2-r4110402060000001-1r2*(1/2),

设a1,a2线性无关,a1+b ,a2+b 线性有关,求向量b 用 a1,a2线性表示的表达式.

∵a1+b,a2+b线性有关可设存在m,n使得m(a1+b)+n(a2+b)=0则ma1+mb+na2+nb=0b=m/(m+n)a1+n/(m+n)a2

第六题,设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表达式.书后参考答案是b=ca1

由题意知,λ1(a1+b)=λ2(a2+b)其中,λ1≠λ2,且两数不全为0于是有:(λ2-λ1)b=λ1a1-λ2a2b=a1λ1/(λ2-λ1)-a2λ2/(λ2-λ1)令λ1/(λ2-λ1)=c

设向量组a,b,c线性无关,a,b,d线性相关则 a必可由b,c,d线性表示 这个是错的吗?

是错的结论应该是d可由其余线性表示再问:能说为什么吗?a不可以用b,d表示吗?再答:a.b.c无关则a.b无关由a.b.d相关知d可由a.b表示再问:a不可以用b,d表示吗?那a不是可以由b,d,c表

设a1、a2线性无关,a1+b a2+b线性相关,求b由1,2线性表示的表达式

因为a1+ba2+b线性相关,所以存在不全为零的数k1,k2(不妨设k1≠0),使得k1(a1+b)+k2(a2+b)=0(k1+k2)b=-k1a1-k2a2这儿k1+k2≠0,如果=0,则0=-k