将极坐标方程P=sinθ 2cosθ转化为直角坐标方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:20:29
1.几何方法p=3sinθ表示圆心在(0,1.5)直径为3的圆,容易写出方程x^2+(y-1.5)^2=1.5^22.代数方法令x=pcosθ,y=psinθ,由p=3sinθ得sinθ=p/3,co
ρ^2=aρ+aρsinθ [根号(x^2+y^2)-0.5a]^2=ay +0.25a^2 ,&
(1)ρ+6cotθ/sinθ=0ρsinθ+6cotθ=0y+6/tanθ=0y+6/(y/x)=0y²+6x=0(2)ρ(1-2cosθ)=6ρ-2ρcosθ)=6√(x²+y
同乘以“ρ”:ρ²=2ρcosα+6ρsinα=>x²+x²=2x+6y=>x²+y²-2x-6y=0
根据点的极坐标化为直角坐标的公式:ρ²=x²+y²,ρcosθ=x,ρsinθ=y两边同乘p.得p²=2√2psinθ,即x²+y²=2√2
圆为切于极轴,圆心在(2,pai/2),半径2pcosθ=0,符合题意另外一条是psinθ=0,重合于极轴
x=ρcosθ,y=ρsinθ二式联立,--->>x^2=(ρcosθ)^2,y^2=(ρsinθ)^2--->>两式相加,得ρ^2=x^2+y^2--->>ρ=√(x^2+y^2),cosθ=x/ρ
因为x=pcosθy=psinθ(这是关于极坐标与平面直角坐标系相互转换公式)又因为p=2sinθ所以x=2sinθcosθ=sin2θy=2sin^2θ=1-cos2θ则由上面可知x与y的关系...
t=0:0.01:2*pi;polar(t,1+sin(t));
p=2sinθ→p²=2psinθ化为直角坐标系方程:x²+y²=2y→x²+(y-1)²=1所以圆心坐标为(0,1)对应的极坐标为(1,π/2)【希
方法:利用以下几个常用公式转化x=pcosθ y=psinθ推出公式:p²=x²+y² tanθ=y/
点A(2,π/2)符合p=2sinθ故A为切点,圆心为C(1,π/2)∴切线⊥CA∴切线的极坐标方程为psinθ=2这样做更好理解A(2,π/2)直角坐标(0,2)曲线p=2sinθ直角坐标方程x^2
∵ρ=sinθ+2cosθ∴ρ2=ρsinθ+2ρcosθ,∴x2+y2=y+2x,即(x−1)2+(y−12)2=54,圆心的直角坐标为(1,12).故填:(x−1)2+(y−12)2=54(1,1
将原极坐标方程ρ=sinθ+2cosθ,化为:ρ2=ρsinθ+2ρcosθ,化成直角坐标方程为:x2+y2-2x-y=0,故答案为:x2+y2-2x-y=0.
化极坐标方程p^2cosθ-p=0的直角坐标方程p^2cosθ-p=0,p(pcosθ-1)=0,p=0或p*cosθ-1=0,p^2=0或p*cosθ-1=0,x^2+y^2=0(即坐标原点)或x-
p^2=2psinθ+pcosθx^2+y^2=2y+x.所用公式如下p^2=x^2+y^2pcosθ=xpsinθ=y
p=5代表到极点的距离是5的点的集合,就是以极点为圆心,半径是5的圆p=2sinθ得到p^2=2sinθ得到x^2+y^2=2y即是圆心在(0,1),半径是1的圆
由y=ρsinθ得,y=4,即y-4=0.故选B.