8个台阶可以一步一步走,可以两步两步走
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:12:41
这个题用排列组合不好作,无法确定步骤,我提供一种方法,供大家参考借鉴:不妨设有n阶台阶,既然一次只能走一步或2步或3步,那么假设现在仅剩下最后一步要走,有三种情况:一只需要走一步,这时已经走了(n-1
七种吧22222223323232332332232323223
(1)2次2阶1次1阶有3种:2,2,12,1,21,2,2(2)1次2阶3次1阶有4种:2,1,1,11,2,1,11,1,2,11,1,1,2(3)全部1阶有1种:1,1,1,1,1一共有3+4+
一个台阶时:1二个台阶时:2=1+1三个台阶时:3=1+2四个:5=2+3五8六13七21八34九55十89正确答案是89上面的“31种”是错的.这是费波拉锲数列
枚举1)1级走10次,只有1种2)1级走7次,3级走1次,在总共8次中,3级那次可放在第一到第八次走,共8种3)1级走4次,3级走2次,分类讨论,若两次3级一起走,可把这6级看做一次,那么与2)类似,
三级台阶的走法有:每次走一级;第一次走一级,第二次走二级;第一次走二级,第二次走一级;一次走三级共四种方法.同样以后的每三级台阶都有四种方法,所以共有4*4*4*4=256
全1级台阶:1全2级台阶:11个2级台阶+6个1:从7步中选1个2级台阶:C7(1)=72个2级台阶+4个1:从6步中选2个2级台阶:C6(2)=153个2级台阶+2个1:从5步中选3个2级台阶:C5
设有n阶台阶,既然一次只能走一步或2步或3步,那么假设现在仅剩下最后一步要走,有三种情况:一只需要走一步,这时已经走了(n-1)阶,走法与走n-1阶相同,有f(n-1)阶走法;二只需要走两步,同上分析
二级0次,就是三级4次,1种二级1次,不可能二级2次,不可能二级3次,三级2次,C(3,5)=10种二级4次,不可能二级5次,不可能二级6次,1种所以共1+10+1=12种
从一层走到12层上升了12-1=11层所以一共18×11=198级台阶
①只用一步走:1+1+1+1+1+1+1=7,只有C1,1=1种走法.②用了一次两步走:1+1+1+1+1+1+2=7,有C6,1=6种走法.③用了两次两步走:1+1+1+1+1+2+2=7,有C5,
一:全是一步一台阶的只有1种二:七步一步一台阶,一步二台阶的有8种,三:五步一比一台阶,两步二台阶,有21种,四:三步一比一台阶,三步二台阶,有20种,五:一步一比一台阶,四步二台阶,有5种,所以共有
这个题属于“植树问题里的两头都栽树的类型”,从2层到6层,间隔是4,因为相邻两层之间的楼梯有18个台阶,所以列式为:18×4=72(个)答:从2层到6层,需要走72个台阶.
walkingstepbystepwalkingforwardstepbystep
F(1)=1F(2)=2F(3)=4F(N)=F(N-1)+F(N-2)+F(N-3)依次类推F(11)=504不明白问我
解题思路:9级的台阶如果只爬2级,需要9÷2≈4次,所以按分别爬,0、1、2、3、4次两个台阶5种情况分类讨论即可.解题过程:解:只爬一次两个台阶有:1×8=8种;2次两个台阶有:7×6÷2=21种;
如果你说的是在第一层走到第十层就是256种第0层到第10层就是512种111111111第一步11111112第二步1111113第三步11111121111114第四步111113111111221
用F[I]表示上到第I级台阶时的方法数因为F[I]只能由F[I-1],F[I-2],F[I-3]三种状态到达,所以递推式F[I]=F[I-1]+F[I-2]+F[I-3]VarF:Array[0..1