已知 p是正方形ABCD中AB上一点,E是DP延长线的·点,且AE垂直BE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:24:03
已知 p是正方形ABCD中AB上一点,E是DP延长线的·点,且AE垂直BE
如图,已知正方形ABCD的边长为1,点P是射线AB上一动点(从点B出发沿BG方向运动)连接PD

存在.讲因为△BEF中的EF那条边也是□PDEF的其中一条边,那P点向G点移动,当P点完全与G点重合的时候,FE那条边已经变成了一条平行线,FE变成了平行线,那△BEF就会变成一个梯形(BEFG).当

已知在正方形ABCD中,P是对角线AC上一点,PE⊥AB,PF⊥BC,连接EF PD,求证:EF=PD

由题意:四边形BFPE是矩形,所以其两对角线PB=EF∵正方形ABCD的两顶点B、D是关于其对角线AC成对称,所以PB=PD∴EF=PD

已知正方形ABCD中,E是CD中点,F是AD中点,连接BE,CF相交于P,求证:AP=AB

取BC中点G,连接AG两点,AG与BE相交于H点由于AF平行并相等于GC,所以AFGC为平行四边形得到AG平行与CF.①易证AGB全等于CFD全等于BEC得到角AGB=角BEC角HGB=角BEC角HB

如图所示,在正方形abcd中,P是对角线AB上的任意一点

四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此

已知:如图,在正方形ABCD中,点P在AC上,PE⊥AB,PF⊥BC,E、F是垂足.求证EF=PD

过P作PM⊥CD,PN⊥AD∵AC是正方形对角线∴PM=PF,PE=PN∵PM⊥CD,PN⊥AD∴PNDM为矩形∴PN=DM∴PE=PN=DM∵PM=PF,PE=PN=DM∠PMD=∠FPE=90°∴

已知:如图,在正方形ABCD中,点P是AC上任意一点(不同于A、C),且PE⊥AB,PF⊥BC,E,F是垂足.试探索EF

连接BP.∵PE⊥AB,PF⊥BC,∴∠PEB=∠PFB=90°,∵四边形ABCD是正方形,∴∠ABC=90°,∴四边形BFPE是矩形,∴EF=BP,在△CDP和△CBP中,∵CD=CB,∠ACD=∠

已知ABCD为正方形,点P是ABCD所在平面外的一点,P在平面ABCD上的射影恰好是正方形的

已知ABCD为正方形,点P是ABCD所在平面外的一点,P在平面ABCD上的射影恰好是正方形的中心,则四棱锥P-ABCD为正四棱锥

已知:如图,正方形ABCD中,E、F分别是AB、BC上两点,且角EDF=45度,DP⊥EF于P,求证:DP

证明:【正方形的边相等,角等于90º我就不写了】延长BA至H,使AH=CF,连接DH∵AH=CF,AD=CD,∠HAD=∠FCD=90º∴⊿HAD≌⊿FCD(SAS)∴DH=DF,

正方形ABCD中,P是对角线AC上一点,PE⊥AB,PF⊥BC ,垂足分别是E.F,试猜想PD.EF的

延长EP交DC于G,ABCD为正方形,AB‖DC,因为PE⊥AB,所以PG⊥DC,AE=DG,对角线AC,PE⊥AB,PF⊥BC,故PF=GC=PG,PE=AE=DG,PD²=DG²

如图,已知,在正方形ABCD中,P.Q分别是BC.CD上的点,且∠PAQ=45度如图,已知,在正方形ABCD中,P、Q分

S三角形ADQ+S三角形ABP=S三角形APQ做AE等于AQ,延长CB到点E.因为正方形,所以AB=AD,∠D=∠ABP=90°,因为∠PAQ=45°,所以∠DAQ+∠BAP=45°在Rt△AEB与R

如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点.

(1)连接DE,交AC于P,连接BP,则此时PB+PE的值最小,即△BPE的周长最小;(2)∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,A

已知正方形ABCD中,P是对角线AC上一点,PE⊥AB,PF⊥BC,垂足分别是E,F求证矩形PEBF的周长是正方形的一半

因为ABCD为正方形,所以角EAP=45度,因为PE垂直于AB,所以角PEA=90度,所以角EPA=45度,因为角角EAP=角EPA=45度,所以PE=AE,所以PE+EB=AE+EB=AB,因为AB

1.已知正方形ABCD中,对角线AC=10CM,点P是AB边上的点,则点P到AC,BD的距离之和为_____.

1.已知正方形ABCD中,对角线AC=10CM,点P是AB边上的点,则点P到AC,BD的距离之和为__5倍根号2___.2.在矩形ABCD中,对角线AC,BD相交于点O,若角AOD=120度,AB=4

已知在正方形ABCD中,P是对角线AC上任意一点,过P点作EF和GH 分别平行于BC和AB,交各边与E,F,G,H.求

那换种方法吧方法把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆.因为E,H,G,F都经过P点,且GH//ABEF//BC所以EF垂直于GH、连结HF,EG因为

已知在正方形ABCD中,P是对角线AC上任意一点,过P点作EF和GH 分别平行于BC和AB,交各边与E,F,G,H.求证

因为ABCD是正方形P在对角线上(你没说明,假设EP=GP)EP=GP,FP=HP所以EP*GP=FP*GP所以EFGH共圆

正方形ABCD中,P是对角线AC上一点,PE垂直AB于E,PF垂直BC于F.

PD=EF∵PE⊥AB,PF⊥BC,AB⊥BC∴∠PEB=∠PFB=∠B=90°∴四边形PEBF是矩形连结PB∵在△PCD与△PCB中PC=PC,∠PCD=∠PCB=45°,PD=PB∴△PCD≌△P

已知正方形ABCD中 E是CD的中点 F是AD的中点 联结BE、CF交于点P 联结AP 求AP=AB

由三角形BCE和CDF全等得角FCE=CBE,CBE+BEC=90度,所以FCE+BEC=90度,得角BPC=90度延长CF、BA交予点G,则AG=CD=AB,而角BPG=90度,即PA是斜边上中线.

已知,正方形ABCD中,对角线AC,BD相交于O,AC=24cm,P是AB上任意一点,则P到AC,BD的距离之和是多少,

如图.蓝色⊿等腰直角,黄色为矩形,P到AC,BD的距离之和=红+蓝=BO=AC/2=12 cm