已知 四边形ABCD是正方形,(1)如图1,点M在边BA的延长线上,点N
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:04:43
设O是CF,AE交点,则O是⊿BCD的重心.AO/AE=2/3阴影面积=S⊿ABC+S⊿AOC=S⊿ABC+(2/3)S⊿ACE=S⊿ABC+(2/3)(1/2)S⊿ACD=S⊿ABC+(1/3)S⊿
∵ABCD是矩形∴∠ABC=∠BCD=∠CDA=∠DAB=90°AB=CD,BC=AD∴ABCD是矩形的外角也是90°∴矩形ABCD的外角平分线,把外角平分成两个45°角∴△ABE、△BCF、△CBG
① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2  
解题思路:利用等腰三角形性质解题过程:见附件最终答案:略
如图所示,连接CF,由分析可知阴影部分的面积:5×5÷2,=25÷2,=12.5(平方厘米).答:阴影部分的面积是12.5平方厘米.
由AO=BO=CO=DO,AC⊥BD根据三角形全等,可得AB=CD,AD=BC,所以四边形ABCD是平行四边形(两组对边分别相等)又因为AC=BD,AC⊥BD,所以平行四边形ABCD是正方形(对角线垂
由题意知:BH=12即BC+CH=12,ACHE是平行四边形故有CH=AE=7,AC=EH所以BC=5因为四边形ABCD是正方形,所以AD=AB=BC=CD=5,则有DE=2图中阴影部分面积S=三角形
本题有结论:∠CAE=30°.理由:∵ABCD是正方形,∴OB=1/2AC,OB⊥AC,∵ABFC是菱形,∴AE=AC,AC∥BF,∵EH⊥AC,∴四边形OBEH是矩形,∴EH=OB,∴tan∠EAH
因为是正方行,∠A=∠B=∠C=∠D=90°,E,F,G,H各是它们的中点,AH=AE=BE=BF=CF=CG=DG所以△AEH全等于△EBF全等于△FCG全等于△GDH所以有EH=HG=GF=FE.
在△DAF和△ABE中AD=AB∠DAF=∠ABEAF=BE所以△DAF全等于△ABE所以∠ADF=∠BAE,BE=AF因为∠DAH+∠BAE=90°所以∠ADF+∠DAH=90°即∠DHA=90°C
sb垂直于平面ABCD且SB=AB=2因此SA=2倍更号2同理SC=2倍更号2AC是正方形对角线=2倍更号2因此SAC是等边三角形O是AC中点因此SO垂直于AC即AC垂直SO.BO=二分之一的BD=更
在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup
如图(1),∵四边形ABCD是正方形,△PAD是等边三角形,∴∠BAP=∠BAD+∠PAB=90°+60°=150°.∵PA=AD,AB=AD,∴PA=AB,∴∠ABP=12(180°-150°)=1
在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup
证明:∵四边形ABCD是平行四边形∴AD//BC∴∠2=∠BCA∵∠1=∠2∴∠1=∠BCA∴AB=BC∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)∵∠BAD=∠1+∠2=45°+45°=90
延长DC,AF交于N,则三个三角形NCF,ABF,DAE都全等,得角AME=BAF,DC=CN,因角ADE+AED=90度,所以角BAF+AED=90度,角AME=90度=DMN,CM是斜边上中线,所
如图O是△ABC的重心,OT/TB=1/3 DO/DB=﹙3+1﹚/﹙3+3﹚=2/3四边形AOCD和四边形ABCD的面积之比=DO∶DB=2∶3
因为角A+角B=180度所以AD平行BC又因为角A=角B=90度AB=DC(平行之间距离相等)所以角C=角D=90度综合上述AB=BC=CD角A=角B=角C=角D=90度所以四边形ABCD为正方形