已知,BD,CE分别为三角形ABC的内.外角评分线,求角a与角的关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:24:15
已知,BD,CE分别为三角形ABC的内.外角评分线,求角a与角的关系
BD,CE分别是三角形ABC的角平分线,AM垂直于CE,AN垂直于BD,垂足分别为M,N,证:MN平行BC

延长AM交BC于点F,延长AN交BC于点G因为BD是角ABC的平分线,AN垂直BD所以角ABN=角GBN,角ANB=角GNB=90度因为BN=BN所以三角形BNA全等于三角形BNG所以AN=GN同理C

关于角平分线的题已知三角形ABC,BD、CE为三角形ABC的角平分线;另一个三角形A'B'C',同样有两条角平分线B'D

过D作DF垂直于BC,过D'作D'F'垂直于B'C'先证明三角形DBF和三角形D'B'F'全等所以,角DBF等于角D'B'F'同理得,角DBA等于角D'B'A'角ECA等于角E'C'A'角ECB等于角

数学全等三角形已知,如图,在△ABC中,BD、CE为两条高线,F为BD上一点,G为CE延长线上一点,BF=AC,CG=A

(1)设BD与GC相交于O,在RT△BOE和RT△COD中,∠BOE=∠COD∴∠OBE=∠OCD∵在△ABF与△GCA中,AB=GC,∠ABF(∠OBE)=∠GCA(∠OCD),BF=AC∴△ABF

一道数学几何计算题~已知在三角形ABC中,BD,CE,分别平分角ABC,角ACB,AG垂直BD,AF垂直CE,AB=12

分别延长AF与AG交BC边于点M,N因为角ABG=角NBG角AGB=NGB角=90度BG=BG所以三角形ABG全等于三角形NBG所以AG=NG,AB=NB同理AF=MF,AC=MC所以FG为三角形AM

在三角形ABC中,已知BD与CE分别为∠B和∠C的平分线,AG⊥CE,AH⊥BD,求证GH‖BC

延长AE,CB交于H延长AG,BC交于K因为BD与CE分别为∠B和∠C的平分线,AG⊥CE,AH⊥BD可证AE=EHE是AH的中点(可用全等△ACE全等HCE(角边角)用到平分角,公共边,垂直角相等)

在三角形ABC中,BD,CE分别为AC,AB上的中线,M,N分别是BD,CE的中点,则MN:BC等于( )

设BD,CE交于O,BD=a.CE=b则EO/OC=DO/OB=1/2因为M,N分别是BD,CE的中点所以EN/NC=DM/MB=1/1所以OM/MB=ON/NC=1/3根据相似MN:BC=1/3

已知如图,BD,CE为三角形ABC的高,求证:ADE~ABC

证明:∵BD⊥AC∴∠ADB=90°∵CE⊥AB∴∠AEC=90°∴∠ADB=∠AEC∵∠A=∠A∴△ADB∽△AEC∴AD/AE=AB/AC∴AD/AB=AE/AC(比例性质)在△DAE与△BAC中

已知,如图,在三角形ABC中,AB等于AC,BD、CE分别是三角形ABC的角平分线,BD、CE相交于点G,有几个等腰三角

不连接DE点的话有2个等腰三角形.ABC和GBC连接DE点就有4个等腰三角形.ABC和GBC,ADE,GDE.再问:但是答案上写的是6个为什么呢再答:有些时候答案也不完全可靠,但是如果角ABC=2倍角

已知:如图,在三角形abc中,ab=ac,bd垂直ac,ce垂ab,垂足分别为d、e.求证:be=cd.

由AB=AC可知,角ABC=角ACB,又角BEC=角BDC=90度,所以角BCE=角CBD,由两角(角BCE=角CBD和角ABC=角ACB)及其夹边(BC边公共)可知三角形BCE和三角形BDC全等,即

如图已知三角形ABC和三角形ADE均为等边三角形,BD,CE交于点F.1、求证:BD=CE; 2、求锐角BFC的度数

因为△ABC和△ADE是等边三角形所以AB=AC,AE=AD,∠BAC=∠ACB=60°,∠EAD=60°因为∠EAD=∠BAC=60°所以∠BAD=∠EAC因为AE=AD,∠BAD=∠EAC,AB=

已知三角形ABC是等边三角形,D,E分别是BC,AC上的点,且BD=CE,以AD为边在AC一侧作等边三角形ADF.

1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,

如图,已知三角形abc为等边三角形,d为bc延长线上一点,ce平分角acd,ce等于bd

过a作af平行于bc交ce于f,因为ce平分角acd,所以ab平行于ce,三角形acf是等边三角形,af=ac,角afe=120=角acd,又因为ce=bd,cf=bc,所以fe=cd,所以三角形ac

已知BD,CE为三角形ABC的高,求证:三角形ADE相似于三角形ABC

证明:∵BD⊥AC∴∠ADB=90°∵CE⊥AB∴∠AEC=90°∴∠ADB=∠AEC∵∠A=∠A∴△ADB∽△AEC∴AD/AE=AB/AC∴AD/AB=AE/AC(比例性质)在△DAE与△BAC中

三角形ABC,已知BD、CE分别平分角ABC、ACB,AM垂直CE于M,AN垂直BD于N.求证MN=1/2(AB+AC-

证明:延长AM、AN分别交BC于点P、Q,∵MC是∠ACB的平分线,AM⊥CE∴AM=MPAC=PC同理可得:AP=PQAN=NQ∵AM=MPAN=NQ∴MN是△APQ的中位线∴MN=1/2PQ又∵P

已知如图,三角形ABC中AB=AC角A等于90°,BD平分角ABC,CE垂直BD与E,求证,BD=2CE

证明:延长BA、CE,两线相交于点F∵BE⊥CE∴∠BEF=∠BEC=90°在△BEF和△BEC中∠FBE=∠CBE,BE=BE,∠BEF=∠BEC∴△BEF≌△BEC(ASA)∴EF=EC∴CF=2

已知三角形ABC中,BD、CE分别是AC、AB边上的高,BD=CE,BD与CE交于点F,求证:FB=FC

证明:因为BD,CE分别是AC,AB边上的高,所以三角形BCD和三角形BCE都是直角三角形,角BDC=角BEC=直角,又因为BC=BC,BD=CE,所以直角三角形BCD全等于直角三角形BCE(斜边,直

BD,CE分别是三角形ABC的外角平分线,过点A作AF垂直BD,AG垂直CE,垂足分别为F.G,连结FG,延长AF.AG

∵AF⊥BD∴∠AFB=∠MFB∵BD,平分∠ABM∴∠M=∠FAB∴AB=BMAF=MF同理AC=CNAG=GN∵AF=MFAG=GN∴FG=1/2MN∴FG=1/2(AB+BC+AC)

已知,如图,BD,CE分别是三角形ABC的外角平分线,过点A做AF垂直BD,AG垂直CE

延长AF,与CB的延长线交于H.延长AG,与BC的延长线交于K.∵BD平分∠ABC,∴△ABF≌△HBF.AF=FH.AB=HG.∵CE平分∠ACK,∴△ACG≌△KCG.AG=GK.AC=KC.∴F

已知:如图1所示,BD,CE分别是三角形ABC的外角平分线,过点A作AF垂直BD,AG垂直CE.

三角形ABM中,BF垂直AM,BF平分角ABM,三角形ABM等到腰,AB=BM,F是AB中点,同理,在三角形ACN中AC=CN,G是AN中点,GF是三角形ANM中位线,GF=1/2(MN)=1/2(B

如图1,BD,CE分别是三角形ABC的外角平分线,过点A作AF垂直BD,AG垂直cE,垂足分别为F,G,连结FG,延长A

延长AF,AG与直线BC相交于M、N,1.三角形ABM中,BF垂直AM,BF平分角ABM,三角形ABM等到腰,AB=BM,F是AB中点,同理,在三角形ACN中AC=CN,G是AN中点,GF是三角形AN