已知,BD,CE分别为三角形ABC的内.外角评分线,求角a与角的关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:24:15
延长AM交BC于点F,延长AN交BC于点G因为BD是角ABC的平分线,AN垂直BD所以角ABN=角GBN,角ANB=角GNB=90度因为BN=BN所以三角形BNA全等于三角形BNG所以AN=GN同理C
过D作DF垂直于BC,过D'作D'F'垂直于B'C'先证明三角形DBF和三角形D'B'F'全等所以,角DBF等于角D'B'F'同理得,角DBA等于角D'B'A'角ECA等于角E'C'A'角ECB等于角
(1)设BD与GC相交于O,在RT△BOE和RT△COD中,∠BOE=∠COD∴∠OBE=∠OCD∵在△ABF与△GCA中,AB=GC,∠ABF(∠OBE)=∠GCA(∠OCD),BF=AC∴△ABF
分别延长AF与AG交BC边于点M,N因为角ABG=角NBG角AGB=NGB角=90度BG=BG所以三角形ABG全等于三角形NBG所以AG=NG,AB=NB同理AF=MF,AC=MC所以FG为三角形AM
延长AE,CB交于H延长AG,BC交于K因为BD与CE分别为∠B和∠C的平分线,AG⊥CE,AH⊥BD可证AE=EHE是AH的中点(可用全等△ACE全等HCE(角边角)用到平分角,公共边,垂直角相等)
设BD,CE交于O,BD=a.CE=b则EO/OC=DO/OB=1/2因为M,N分别是BD,CE的中点所以EN/NC=DM/MB=1/1所以OM/MB=ON/NC=1/3根据相似MN:BC=1/3
证明:∵BD⊥AC∴∠ADB=90°∵CE⊥AB∴∠AEC=90°∴∠ADB=∠AEC∵∠A=∠A∴△ADB∽△AEC∴AD/AE=AB/AC∴AD/AB=AE/AC(比例性质)在△DAE与△BAC中
不连接DE点的话有2个等腰三角形.ABC和GBC连接DE点就有4个等腰三角形.ABC和GBC,ADE,GDE.再问:但是答案上写的是6个为什么呢再答:有些时候答案也不完全可靠,但是如果角ABC=2倍角
由AB=AC可知,角ABC=角ACB,又角BEC=角BDC=90度,所以角BCE=角CBD,由两角(角BCE=角CBD和角ABC=角ACB)及其夹边(BC边公共)可知三角形BCE和三角形BDC全等,即
因为△ABC和△ADE是等边三角形所以AB=AC,AE=AD,∠BAC=∠ACB=60°,∠EAD=60°因为∠EAD=∠BAC=60°所以∠BAD=∠EAC因为AE=AD,∠BAD=∠EAC,AB=
1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,
过a作af平行于bc交ce于f,因为ce平分角acd,所以ab平行于ce,三角形acf是等边三角形,af=ac,角afe=120=角acd,又因为ce=bd,cf=bc,所以fe=cd,所以三角形ac
证明:∵BD⊥AC∴∠ADB=90°∵CE⊥AB∴∠AEC=90°∴∠ADB=∠AEC∵∠A=∠A∴△ADB∽△AEC∴AD/AE=AB/AC∴AD/AB=AE/AC(比例性质)在△DAE与△BAC中
证明:延长AM、AN分别交BC于点P、Q,∵MC是∠ACB的平分线,AM⊥CE∴AM=MPAC=PC同理可得:AP=PQAN=NQ∵AM=MPAN=NQ∴MN是△APQ的中位线∴MN=1/2PQ又∵P
证明:延长BA、CE,两线相交于点F∵BE⊥CE∴∠BEF=∠BEC=90°在△BEF和△BEC中∠FBE=∠CBE,BE=BE,∠BEF=∠BEC∴△BEF≌△BEC(ASA)∴EF=EC∴CF=2
证明:因为BD,CE分别是AC,AB边上的高,所以三角形BCD和三角形BCE都是直角三角形,角BDC=角BEC=直角,又因为BC=BC,BD=CE,所以直角三角形BCD全等于直角三角形BCE(斜边,直
∵AF⊥BD∴∠AFB=∠MFB∵BD,平分∠ABM∴∠M=∠FAB∴AB=BMAF=MF同理AC=CNAG=GN∵AF=MFAG=GN∴FG=1/2MN∴FG=1/2(AB+BC+AC)
延长AF,与CB的延长线交于H.延长AG,与BC的延长线交于K.∵BD平分∠ABC,∴△ABF≌△HBF.AF=FH.AB=HG.∵CE平分∠ACK,∴△ACG≌△KCG.AG=GK.AC=KC.∴F
三角形ABM中,BF垂直AM,BF平分角ABM,三角形ABM等到腰,AB=BM,F是AB中点,同理,在三角形ACN中AC=CN,G是AN中点,GF是三角形ANM中位线,GF=1/2(MN)=1/2(B
延长AF,AG与直线BC相交于M、N,1.三角形ABM中,BF垂直AM,BF平分角ABM,三角形ABM等到腰,AB=BM,F是AB中点,同理,在三角形ACN中AC=CN,G是AN中点,GF是三角形AN