已知,p在三角形abc所在的平面外,点a,b,c分别是三角形pab,三角形pbc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:24:11
已知,p在三角形abc所在的平面外,点a,b,c分别是三角形pab,三角形pbc
已知等腰三角形ABC的三边长满足方程x^2-11x+30=0,在三角形ABC所在平面内找一点P,使得点平P到三个顶点A、

(1)由题设可知,该等腰三角形三边为5,5,6.或5,6,6.(2).其实,点P即所谓的“费尔玛点”.由题设及费尔玛点的性质可得这个最小值为4+3√3.(5,5,6时)或[5√3+√119]/2.(5

已知P是三角形ABC所在平面内的一点,若CB向量=入PA向量+PB向量,入属于R,则点P一定在哪?..

由CB向量=λPA向量+PB向量得CB向量-PB向量=λPA向量,即CP向量=λPA向量,那么点P一定在直线AC上.

如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的

选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,

已知P是三角形ABC所在平面外一点,D.E分别是三角形PAB.三角形PBC的重心.

四边形PABC是空间四边形作AB、BC的重点M、N连接PM、PN(过D、E)易得DE平行且相等于2/3MNMN平行且相等于1/2AC所以DE平行且相等于1/3AC

已知三角形ABC在平面α外,它的三条边所在的直线分别交α与P,Q,R,求证P,Q,R三点共线

△ABC可以确定一个平面,P、Q和R三点都在这个平面上.P、Q、R三点同属于平面α和平面ABC,而平面α和平面ABC的公共部分为一直线,所以P、Q、R三点共线.

已知等边三角形abc的高为4,在这个三角形所在的平面内有一点p,若点p到ab的距离是1,点p到ac的距离是2,则点p到b

如图  分别作平行于ab的距离为1和2的平行线,有两个交点,即对应的到bc最远与最近的P点,再利用相似三角形即可求得最远距离 和最近距离因为ad=4 所以ab=

已知三角形ABC在平面外,它的三边所在直线分别交平面于平面P.Q.R三点

就说下PQR三点在平面α上,也在平面ABC上所以PQR三点都在平面α和平面ABC的交线上,即在同一直线上.

已知三角形ABC的三边所在的直线分别与平面 交于P,Q,R三点.求证 P,Q,R,三点在一条直线上

把三角形看成一个平面两平面相交,交线为一直线显然PQR都在这直线上

在已知三角形ABC所在的平面上存在一点P,是他倒三角形则称三个顶点的距离之和最小

(2)①证明:由托勒密定理可知PB•AC+PC•AB=PA•BC∵△ABC是等边三角形∴AB=AC=BC,∴PB+PC=PA,②P′D、AD,如图,以BC为边长在△

已知P是三角形ABC所在平面内的一点,若向量CB=x向量PA+向量PB,则点P一定在AC边所在的直线上 给出证明

证明:因为向量CB=x向量PA+向量PB,所以向量CB-向量PB=x向量PA,即向量CP=x向量PA,所以P在AC所在直线上希望能帮到你O(∩_∩)O~

在三角形ABC中,∠C=90°,点P在三角形ABC所在平面外,PC=17,P到AC.BC的距离PE=PF=13,则P到平

作PO⊥面ABC,所以PO⊥BC因为PE⊥BC所以BC⊥面POE推出BC⊥OE同理PF⊥AC又,∠C=90°CF=CE=根号(172-132)=根号120可知四边形ECFO是正方形,所以EO=根号12

已知O,N,P在三角形ABC所在的平面内,且向量PA*PB=PB*PC=PC*PA,证明点P是三角形ABC的垂心.

因为PA*PB=PB*PC所以PA*PB-PB*PC=0PB*(PA-PC)=0PB*CA=0所以PB与CA垂直同理可证PA垂直于BC,PC垂直于AB所以点P是三角形ABC的垂心.

已知三角形的面积为2,在三角形ABC所在的平面内有P Q ,满足向量PA+向量PC=0

向量PA+向量PC=0P是AC中点向量QA=向量2BQQ是BA的三等分点连接BPP是AC中点∴S△ABP=S△CBP=S△ABC*1/2=1∵BQ=1/3AB∴S△BPQ=1/3*S△ABP=1/3∴

已知P为三角形ABC所在平面外一点,G1、G2、G3、分别是三角形PAB,三角形PCB,三角形PAC的重心,求证:平面G

设H1,H2,H3分别为PG1,PG2,PG3交于AB,BC,AC的点,则G1G2//H1H2,G2G3//H2H3.所以,G1G2//面ABC,G2G3//面ABC.又,G1G2与G2G3相交,故面

已知P为三角形ABC所在平面外一点,O为P在平面ABC上的射影,若PA垂直BC,PB垂直AC,则O是三角形ABC的

垂心证:已知PA垂直BC,且PO是平面ABC的垂线,即AO是PA在平面ABC内的射影,所以由三垂线定理逆定理得:AO垂直BC,同理,BO垂直AC.综上,点o为垂线焦点,即垂心.

已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,

本题是在一道经典习题基础上衍化出来的,那道习题是说等边三角形内的任意一点到等边三角形三边的距离之和为定值,定值等于已知等边三角形的高.如图①,P是⊿ABC内部的一点,PD⊥BC,PE⊥AC,PF⊥AB

已知点p在三角形ABC所在平面内,向量PA*PB=PB*PC=PC*PA,如何证明p是三角形的垂心?

∵向量PA·向量PB=向量PC·向量PA, ∴向量PA·向量PB-向量PA·向量PC=0,∴向量PA·(向量PB-向量PC)=0, ∴向量PA·向量CB=0, ∴向量PA⊥向量CB,∴PA⊥CB.同理

在三角形ABC中,∠C=90°,点P在三角形ABC所在平面外,PC=17,P到AC、BC的距离PE=PF=13,则P到平

过P点作平面ABC的垂线,交平面ABC于点D于是PE、PF在平面ABC上的射影分别是DE、DF因为PE⊥AC,PF⊥BC根据三垂线定理的逆定理,有DE⊥AC,DF⊥BC因为△PDE和△PDF都是Rt△