已知,▲ABC中CA=CB,∠ACB=90°,点O为AB的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:24:27
CA*CB=|CA|*|CB|*cosC=1x2x√2/2=√2
∵△ABC是等腰直角三角形,∠ACB=90°∴AC=BC,∠A=∠ABC=45°将△ACM绕C旋转90度到△CBD的位置,连接ND∵△ACM≌△BCD∴CM=CD,∠ACM=∠BCD,∠A=∠CBD=
过点O作OD⊥ON,交AC于D当∠MON=45°时,∠B=∠A=∠MON=45°∴∠ACB=90°∴点O是AB的中点∴OC=OA,∠OCN=∠A=45°∵∠AOC=∠DON=90°∴∠CON=∠AOD
上题一般会问的是:求证:CN+MN=AM或CN、MN、AM之间的关系.求证方法:连接OC,在AM上截取AQ=CN,连接OQ,∵O为CA、CB的垂直平分线的交点,∴OC=OA=OB,∵AC=BC,∴OC
证明:取AB的中点O,连接OC,OA1,A1B,∵CA=CB,∴OC⊥AB,又∵AB=AA1,∠BAA1=60°,∴△AA1B是等边三角形,∴OA1⊥AB,∵OC∩OA1=O,∴AB⊥平面OA1C,∵
上题一般会问的是:求证:CN+MN=AM或CN、MN、AM之间的关系.求证方法:连接OC,在AM上截取AQ=CN,连接OQ,∵O为CA、CB的垂直平分线的交点,∴OC=OA=OB,∵AC=BC,∴OC
CA+CB这个向量是平行四边形CBDA的对角线.CA-CB=BA在平行四边形CBDA中,两条对角线垂直,这是一个菱形,所以三角形ABC是一个等腰三角形.
∵CA=CB,∠CAB=45°,∴△CAB是RT△,CO垂直平分AB,CO是∠ACB的平分线;在AM上截取AD=CN,如上图,∵∠A=∠OCN=45°,AO=CO,∴△AOD≌△CON,故OD=ON,
△ADC与△FDC关于直线CD对称,知△ADC与△FDC全等,因此∠ACD=∠FCD,AC=FC,∠CAD=∠CFD=45°;因为∠DCE=45°,∠ACB=90°,得∠ACD+∠BCE=45°;∠F
CN、MN、AM相等CA=CB,∠MON=60°,∠MON=∠A得CA=CB=AC,等边三角形AM=1/2AC=CN=1/2BC=MN=1/2AB,成立再问:不对吧,看图就知道不对,我把图发给你。不过
^2是平方1) 由于NA⊥平面ABC,所以NA⊥AB,则BN=√(AN^2+AB^2) 在Rt△ABC中,∠BAC=90°,所以AB=√(AC^2+BC^2)=√(1^
证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠
证明:∵∠C=90°,CA=CB,∴∠ABC=∠BAC=45°,∵∠C=90,DE⊥AB,BC是∠BAC的平分线,∴DE=CD,∴△ADE≌△ADC(HL)∴AC=AE,又∵DE⊥AB,∴∠B=∠BD
S=(ab/2)×sin=15/4所以sin=1/2因为a*
过A做AD⊥AC交BC于D∵∠A-∠B=90°∴∠B=∠A-90°=∠A-∠CAD=∠BAD∴BD=AD;AD^2+CA^2=CD^2;BD^2+CA^2=CD^2;CA^2=CD^2-BD^2CB=
你把三角形ABC补成一个平行四边形ABCD(以CBCA为邻边作平行四边形)CB向量+CA向量=CD向量(就是平行四边形的一条对角线)这个CD向量=AB边上中线的2倍
CEF绕C点旋转,E,F在斜边AB上,线段AE,EF,FB总可以构成直角三角形.证明:将△CAE绕C逆时针旋转90°,A点和B点重合,E点到P,连PF,△CAE≌△CBP.∴BP=AE,又CP=CE,
证明:AB=CB,BF=BF,∠ABF=∠CBF.则⊿ABF≌⊿CBF(SAS).故AF=CF,∠FAC=∠FCA;又AF平行DC,则∠DCA=∠FAC.所以,∠DCA=∠FCA.(等量代换)
设AB=c,BC=a,CA=b,带进去得到c^2=cb+ca+ba所以(c-a)*(c-b)=0或者c=a;或者c=b;所以是等腰三角形
由条件:OD,OE分别是∠CDE,∠CED的平分线.∵∠C+∠CDE+∠CED=180°,∴1/2(∠CDE+∠CED)=90°-1/2∠C,(1)又∠DOE+1/2(∠CDE+∠CED)=180°,