已知,△ABC内接于圆O,弦BCD所对劣弧为120°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:27:13
连结AO并延长交⊙O于点D,连结CD∵∠ACD=90°∴∠D+∠CAD=90°∵∠EAC=∠ABC=∠D∴∠EAC+∠CAD=90°∵点A在⊙O上∴EF与⊙O切于点A
那么角c等于120度,圆半径,即r可用三角函数求得.具体方法就不用说了吧!
证明:(1)∵AD平分∠BAC,∴∠1=∠2,(2分)∵BF切⊙O于点B,∴∠3=∠2,∴∠3=∠1,(4分)又∵∠2=∠4,∴∠3=∠4,即BD平分∠CBF;(6分)(2)在△DBF和△BAF中,∵
证明:∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD注:明白了就可以了,别加分,免
连接CO,并延长交圆于D点,连接AD和AO.得出CD为圆的直径,∠OAC=∠OCA,∠B=∠ADC因为CD为直径,所以∠ADC+∠OCA=90°.又因为∠B=∠CAE,∠B=∠ADC,∠OAC=∠OC
∠AOC=2∠B=60°圆心角等于圆周角的2倍,所以∠AOC=60度∵AO=CO,OH⊥AC∴∠AOH=30°、△OAC为等边三角形,所据此求出OA长度,可以计算出劣弧弧AC的长;根据含30°角的直角
证明:连结AO交圆与点D,连结DB,则因为
因为AE是⊙O的直径,所以∠ABE=90°,∠BAE=90°-∠BEA因为弦AD与弦BC垂直,所以∠CAD=90°-∠ACB因为∠BEA=∠ACB所以∠BAE=∠CAD
BD切圆O于B证明:连接BO并延长BO交圆O于E,连接AE∵直径BE∴∠BAE=90∴∠BAC+∠CAE=90∵∠CBE、∠CAE所对应圆弧都为劣弧CE∴∠CBE=∠CAE∵∠CBD=∠BAC∴∠EB
1.画一个圆0,随意再画一个内角为60度的内接三角形.连接AO并延长与圆相交于D,连接DC,则DC垂直于AC,根据同弧所对的圆周角相等,角ADC=角B=60度,因为AC=12,所以AO=8根号3,O到
∵AC平分∠BAD∴∠BAC=∠DAC∵∠DBC=∠DAC∴∠BAC=∠DBC又∵∠ACB=∠BCE∴⊿ABC∽⊿BEC
图一会就到,①证明:连接数CO交圆于F点,设高为h 则∠CAB=∠CFB因FC为直径所以∠CBF为直角所以△CBF∽△CDA所以及CB:CD=CF:CA即a:h=d:b所以h=(ab/d)&
(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=
再问:十分感谢!再答:都明白了吗,有不懂的地方,我再给你解释再问:都明白了!将军真乃神人也!再答:好的,谢谢好评了
证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角
用正弦定理AC/sin30度=2RR为半径,R=2
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
连接OA,OC,AO交BC于点F,则OA=OC,∠B=∠C,∴AB=AC,由圆周角定理知,∠O=2∠D=60°,所以等腰△OAC是等边三角形,有AB=AC=OA,∵∠B=∠C,∴AE⊥BC∵AB=AC
(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,
2.延长ao交圆与d点连接cd、co角acd为90度(直径所对应的圆周角为90度)角adc为30度(同意段弧线所对应的圆周角相等)ac=ao=co=2三角形aco为等边三角形交coa为60度刚没看到你