已知,在三角形ABC中,AC=BC,∠C=90°,点P在三角形内

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:10:45
已知,在三角形ABC中,AC=BC,∠C=90°,点P在三角形内
在三角形ABC中,已知

A=45`a/sinA=c/sinCc=6*根号2

已知在三角形abc中,ab=ac,p是三角形abc内一点,且角apb=角apc

证明:把⊿APB绕点A旋转至⊿ADC的位置(如图).则∠ADC=∠APB=∠APC;DC=PB,AD=AP.∴∠ADP=∠APD.∴∠CDP=∠CPD(等式性质)则PC=DC=PB.

在三角形ABC中,已知叫C=60度,AC>BC,有三角形ABC'、三角形BCA'、三角形CAB'都是三角形ABC形外的等

1、DC=BC,角BCD=60度,所以三角形BCD为等边三角形三角形C'BD与三角形ABC中BD=BC,BC'=BA,角C'BD=角ABC,三角形C'BD与三角形ABC

在三角形ABC中,已知AB=根号5,AC=5,且cosC=9/10,则BC=?

由余弦定理得:cosC=(BC^2+AC^2-AB^2)/2BC×AC带入数据解出BC即可

已知在三角形ABC 中,AB=15,BC=14,AC=13.求三角形ABC的面积

作CD垂直AB,设AD=x,则13的平方-x的平方=14的平方-(15-x)的平方,解得x=33/5,所以CD=11.2,S=15×11.2÷2=84

在三角形ABC中,AC=BC,

延长BE交AC的延长线于F∵∠BFC+∠DAC=90°,∠BFC+∠CBF=90°∴∠DAC=∠CBF在⊿BCF,⊿ACD中∠DAC=∠CBF,AC=BC,∠ACD=∠BCF=90°∴⊿BCF≌⊿AC

在三角形abc中,已知ab等于十二,bc等于三十五,ac等于三十七,求三角形abc的面积

这是个直角三角形,面积=210 用勾股定理逆定理来判断 过程如下图: 

在三角形abc中,已知AB=12,BC=35,AC=37,求三角形ABC的面积

应用海伦定理:假设三角形的三边为a、b、c,记p=(a+b+c)/2,三角形的面积S=√[p*(p-a)*(p-b)*(p-c)]所以答案是210

已知:如图,在三角形ABC和三角形DEF中,AB=DE,AC=DF,∠A=∠D,求证:三角ABC全等三角形DEF.

证明:∵在△ABC和△DEF中AB=DE(已知)∠A=∠D(已知)AC=DF(已知)∴△ABC≌△DEF(SAS)

矢量与三角形在三角形ABC中,已知矢量AB与AC满足{(AB/|AB|)+(AC/|AC|)}*BC=0,三角形ABC是

等腰三角形.AB单位向量和AC单位向量设为AM,其基线为角A角平分线,又AM垂直BC,所以,三角形为等腰三角形AB单位向量和AC单位向量,是其方向上单位模长的向量,由于模长相等,按平行四边形法则加和,

在三角形ABC中,已知角A=60度,AB=5,AC=6,求BC边的长及三角形ABC的面积

根据余弦定理:BC²=AB²+AC²-2AB*ACcosA因此:BC²=25+36-60×1/2=31∴BC=√31S=ABACsinA/2=15√3/2

在三角形ABC中,AB=AC,

证明:因为AB=AC,所以三角形ABC是等腰三角形;由

在三角形ABC中,已知AB=2,AC=根号8,角ABC=45度,求三角形面积?

作AD垂直BC,因为角ABC为45度,所以,BD=AD=根号2,再根据勾股定理,算出CD=根号6,根据面积公式,S=二分之一乘根号2乘【根号2+根号6】=1+根号3

已知 如图 在三角形ABC中 AB=AC∠BAC等于α 且60°<α<120°.P为三角形ABC内

角APC=1/2(180度-角PCA)=30度+1/2*a由(1)知角PAC=角APC=30度+1/2*a则角BAP=a-(30度+1/2*a)=1/2*a-30度,而角PCB=1/2(180度-a)

已知在三角形ABC中,AB+AC=9cm,AB和AC的夹角为

解题思路:二次函数探求函数的最值.解题过程:最终答案:略

已知,如图,在三角形ABC中,角ACB=90度,AC=BC,

作AH//BC,延长EC交AH于H,连接CH,CEAH//BC∠EFG=∠GAH,AG=GF,∠EGF=∠AGH△EFG≌△AGH(ASA)EF=AH因BE=EF所以,BE=AGAC=BC,∠EBC=

已知:如图,在三角形ABC中,AB=AC,点D在AC上,且BD=BC=AD.求三角形ABC各角的度数

∵AD=BD∴∠ABD=∠A∴∠BDC=∠A+∠ABD=2∠A∵BD=BC∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C=2∠A∵∠A+∠ABC+∠C=180∴5∠A=180∴∠A=36°∴∠A

在三角形ABC中,已知向量AB AC=9,sinB=cosA sinC,S三角形ABC=6,

设AB=c,BC=a,AC=b∵sinB=cosA•sinC∴sin(A+C)=sinCcosnA即sinAcosC+sinCcosA=sinCcosA∴sinAcosC=0∵sinA≠0