已知,如图,a,b为圆o上的两点,角aob=120°,d为劣弧ab的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:17:34
设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD
∵AC是⊙O的直径,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP为切线,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB为正三角形,∴周长=33.
(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2
(1)由题意,得a=2,e=22,∴c=1,∴b2=1.所以椭圆C的标准方程为x22+y2=1.(6分)(2)∵P(-1,1),F(1,0),∴kPF=−12,∴kOQ=2.所以直线OQ的方程为y=2
过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD
半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2
证明:∵CO=AC∴∠O=∠CAO∵CB=CA∴∠B=∠CAB∴∠O+∠B=∠CAO+∠CAB=∠OAB∵∠O+∠B+∠OAB=180º∴∠OAB=90º,即AB⊥OA∵OA是半径
过点P作PD⊥BQ,则可知ABPD为矩形,BD=AP=1PD=ABQD=BQ-BD=-4-1=3由题可知PC=AP=1CQ=BQ=4则PQ=4+1=5在Rt△PDQ中,PD=PQ-QD=5-3则PD=
(1)汽车行驶到(4,0)位置时离A村最近(2)汽车行驶到(0,7)位置时离B村最近再问:怎么列算式啊再答:按照几何原理,过点A做x轴的垂线,垂足距离最短B点也一样
做AC⊥OBOC=OAcosθ=cosθAC=OAsinθ=sinθCB=根号[AB^2-AC^2]=根号[(根号2)^2-sin^2θ]=根号[1+cos^2θ]x(θ)=OC+CB=cosθ+根号
证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO
(1)连结OB∵∠OBC=∠OCB,∠BOC=2∠D∴∠OBC+∠BOC/2=90°∴∠OBC+∠D=90°∵∠ABC=∠D∴∠ABC+∠OBC=90°,∴OB⊥AB,AB为圆的切线.(2)∵tanD
在AD上,A坐标(2,0),C坐标(1,1)
(1)三角形AOP全等于三角形BOP(斜边、直角边定理),故角AOP等于角BOP.三角形AOC全等于三角形BOC(边角边)故角ACO等于角BCO,边AC等于边BC.因两角和180,故垂直平分.(2)P
设B(x,0)则圆B半径为2-x所以圆心之间的距离等于两圆半径相加圆A半径为1圆B半径为2-xAB距离为根号下(x^2+4)则有等式2-x+1=根号下(x^2+4)解方程得x=5/6
连接OA,OB,OP,然后用四边形OAPB的面积减去扇形OAB的面积.
连接OA,OB,OP将四边形OAPB分成两个含30度角的直角三角形,求出两个直角三角形的面积,然后减去扇形OAB的面积即可
过B作BE⊥X轴于E,过C作CF⊥X轴于F,过D作DQ⊥X轴于Q,∵OD=AD=3,∴OQ=1/2OA=2,DQ=√(OD^2-OQ^2)=√5,二次函数最大值之和就是BE+CF的值,设P(m,0),
(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥AB.∴∠OAB=90°.∵OQ=QB=1,∴OA=1.∴AB=OB2−OA2=22−12=3.∵△ABC是等