已知,如图,∠APC的顶点P在圆O外,角的两边分别
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:12:08
PC=PB+PA.证明:首先由于圆周角定理可以知道∠BAC=∠BPC=60°,∠ABC=∠APC=60°,因此△ABC是等边三角形.在线段PC上取点D使得PD=PB,则△BPD是顶角为60°的等腰三角
证明:以AC为边,在△ABC外作∠CAQ=∠BAP,且AQ=AP,连接CQ∵AB=AC,∠BAP=∠CAQ,AP=AQ∴△ABP≌△ACQ(SAS)∴∠APB=∠AQC,PB=QC连接PQ∵AP=AQ
作OF⊥CD与F,则F为CD中点.直径AB=8,OA=4,OP=4-2=2,直角三角形OFP中,∠DPB=∠APC=30°,所以OF=1.直角三角形OCP中,斜边OC是半径4,利用勾股定理,CF=√(
连结OA、OC,作OE⊥PA于E,OF⊥PB于F,由△OPE≌△OPF得PE=PF,OE=OF,由△OAE≌△OCF得AE=CF,∴PA=PC
过点O分别作PC、PE的垂线,垂足为M、N.因为∠APC=∠APE,OM⊥PC,ON⊥PE,所以OM=ON(角平分线的性质).所以,CD=EF(垂径定理的推论).
这位大姐(或大哥),感觉题目说得不太完整啊,还有抛物线是不是y=-4/3*x^2+bx+c啊?如果是的话:首先,过P做y轴垂线,交y轴于M,过P做x轴垂线,交x轴于N.由边长及对角线长度可知,角CAO
APC绕点C逆时针旋转90°,得△BCO,连结OP由于BC=AC,所以BC与AC重合,亦即点A落到点B处根据辅助线的作法可知△ACP≌△BCO∴∠BCO=∠ACP,∠BOC=∠APC,BO=PA=1,
(1)四边形EFGH是菱形.(2分)(2)成立.(3分)理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,
设A=(a,1/a)(1-a)/(1/a-1)=1/nn-na=1/a-1na^2+(n-1)a+1=0(a-1)(na-1)=0a=1(舍去)或1/n∴1/a2+1/a3+...+1/a2012=2
△ABC是等边三角形因为同一条弧所对的圆周角相等角BPC=BAC=60角APC=ABC=60所以角ACB=60
解题思路:利用圆中的性质和相似三角形。解题过程:已知A,P,B,C是圆O上的四点,∠APC=∠BPC=60°,AB与PC交于Q点,若AP=6,AQ/BQ=3/5,求PB的长图和
(1)相等△APD与△BPC中,AP=CP,BP=DP,角APD=BPC,所以全等,AD=BC(2)△PDE与△BPF全等由△APD=△BPC——角ADP=CBP,角DPB=60,角CPD=180-6
⑴过O作OM⊥AB于M,ON⊥CDD于N,∵OP平分∠APC,∴OM=ON,∴AB=CD(相等的弦心距所对的弦相等),⑵由垂径定理得BM=1/2AB,DN=1/2CD,∴BM=DN,易得ΔPOM≌ΔP
如图,将△ABP绕A点顺时针旋转60°,得到△ACP'.连接PP’,易知APP'为正三角形,得PA=PP'.可知以PA.PB.PC为三边的三角形即是△P'PC.∠P
过A作AE//PC交CD于E.则由于AE//PC所以∠APC+∠PAE=180°∠PCD=∠DEA又由于∠BAE+∠DEA=180°所以∠APC+∠PAE+∠PCD+∠BAE=360°而∠PAB+∠P
证明:连接OM和ON分别交AB于E,交CD于F根据垂径定理,M、N分别是弧AB和弧CD的中点所以OM垂直AB,ON垂直CD因为PO平分∠APC所以OE=OF所以AB=CD因为△POE≌△POF所以PE
http://zhidao.baidu.com/link?url=F40Rw3xvCRgl8Mz-8GALLwUSo-6j5y0g-qDbRbsYANLRUyYIh8uWusogHgeAtpke7OR
将ΔABP绕点A顺时针旋转∠BAC大小的角度,得到ΔACP',则P'C=PC,AP'=AP,∠AP'C=∠APB并连接PP"则∠AP'C=∠APB&g
证明:∵ABCD是平行四边形∴AO=BO,CO=DO∵∠APC=90°∴PO=1/2AC(直角三角形斜边中线等于斜边一半)同理可得:PO=1/2BD∴AC=BD∴平行四边形ABCD是矩形(对角线相等的
作EF//CD交AB于F,则BF:FD=1:2(BE=1/3BC),故AD:FD=3:2(D为三角形ABC边AB的中点),即AP:PE=3:2.,所以S三角形APC=3/5(S三角形AEC)又S三角形