已知,如图,圆O的直径AD=2,弧BC=弧DC=弧DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:10:49
连接BD,则三角形ABD是直角三角形,BD²=AB²-AD²;则BD²=80-64=16,则BD=4;因OC垂直AD,则F是AD中点,即AF=4;因角BED=D
连接BC∵OA=OC∴∠BAC=∠ACO∵AC平分∠DAB∴∠DAC=∠BAC∴∠DAC=∠ACO∴AD∥OC∵CD切圆O于C∴OC⊥CD∴AD⊥CD∴∠ADC=90∵直径AB∴∠ACB=90∴△AC
很简单呐解:因为AB为直径且垂直CD所以CP=PD因为角APD=角CPB角B=角D所以三角形APD相似于三角形CPB所以AP比CP=DP比BP所以CP·PD=AP·BP即PC^2=PA*PB
证明:连接AC、BC则∠ACB=90°∵CP⊥AB∴弧BC=弧BD∴∠A=∠BCP∵∠CPB=∠CPA=90°∴△ACP∽△CBP∴CP/AP=BP.CP∴CP²=AP*PB
证明:∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD注:明白了就可以了,别加分,免
半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2
因为角aeb=角acb因为ae直径AD为BC上的高所以角aeb=角aec=角acb所以三角形abe和adc相似所以AB/AE=AD/AC得AB·AC=AE·AD
1、从O点到B、C点各做一条辅助线.因为OA=OB=OD=OC=半径;并且题意说AB=CD,根据边边边定理,三角形AOB全等于三角形ODC.再根据内错角BCO和COD、AOB和CBO相等的定理,可以判
证明:连接AC1、∵弧AB=弧AF∴AB=AF∴∠ABF=∠AFB∵∠ACB、∠AFB所对应圆弧都为劣弧AB∴∠ACB=∠AFB∴∠ACB=∠ABF∵AD⊥BC∴∠BAD+∠ABC=90∵直径BC∴∠
分为两种情况:①如图1,过O作OE⊥AD于E,作OF⊥AC于F,由垂径定理得:AE=12AD=12,AF=12AC=122,∵OA=12AB=1,在△AEO和△AFO中,cos∠EAO=AEAO=12
分析:连接BD,根据AD∥OC,易证得OC⊥BD,根据垂径定理知:OC垂直平分BD,可得CD=CB,因此只需求出CB的长即可;延长AD,交BC的延长线于E,则OC是△ABC的中位线;设未知数,表示出O
解题思路:用圆性质证明解题过程:请把完整的条件写一下。最终答案:略
1、因为角ADB为直径所对圆周角所以,角ADB=90度角DAB+角DBA=90度又因为角DBC=角DAB所以角DBC+角DBA=90度即角ABC=90度BC为半圆O的切线2、因为OC平行于AD,而且O
(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
连接BD,则∠ADB=90°;∵AD∥OC,∴OC⊥BD;根据垂径定理,得OC是BD的垂直平分线,即CD=BC;延长AD交BC的延长线于E;∵O是AB的中点,且AD∥OC;∴OC是△ABE的中位线;设
因为AD平行于OC,o点是ab的中点,所以OE等于1/2AD
说的真模糊~还不知道你今年多大...姑且认为你不是在耍人吧.嗯,说正题.连结AC,BC(这个圆里的三角形要记住.因为有很重要的结论:CD的平方等于AD乘BD,那么BD=8,则AB=10)若是大题,忽略
(1).连BE,角E=角ACB,角ABE是直角,所以ABE和ADC相似,AB/AE=AD/AC,又AB=BC,BC*AC=AD*AE(2).FAC和FCB相似(弦切角ACF=角B),FA/FC=FC/