已知1 x的n次方的展开式中第9项,第10项,第11项

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:42:54
已知1 x的n次方的展开式中第9项,第10项,第11项
已知二项式为(x-x分之1)的9次方,求证二项式展开式中无常数项.求二项式展开式中x的3次方的系数.

研究通项即可1、由于通项中x的次数(9-r)-r=0无整数解,所以无常数项2、求展开式中x的3次方的系数,即求(9-r)-r=3的解解得r=3所以T4=-84·x的3次方所以x的3次方的系数为-84

已知(1+根号2)的n次方的展开式中第9项,第10项,第11项的二项式系数成等差数列,求n

汗```这个题是很有难度的知道吗?(意思就是说你给的分太低啦!)算了,还是告诉你吧.谁让我太喜欢`太精通数学了.解题方法如下:根据二项展开公式的通项公式可得:原式第9项,第10项,第11项的二项式系数

已知在(1/2x^2-1/根号x)^n的展开式中,第9项为常数项求 n的值,展开式中x^5的系数,

C(n,8)(x^2/2)^(n-8)(-x^(-1/2))^8=C(n,8)(1/2)^(n-8)x^(2n-16-4),2n-20=0,n=10-------------------C(10,k)

已知在(1/2x^2-1/根号x)^n的展开式中,第9项为常数项求 n的值,展开式中x^5的系数,还有含x整数次幂的项的

题目有歧义,能再加几个括号不再问:哪有歧义???再答:1/2x^2的^2在哪谁上?再问:1/2和x是可开的,在x上

已知二项式(x-x²分之1)的n次方展开式中所有偶数项的系数和为-512,

因为偶数项系数绝对值和奇数项系数绝对值相等都为2^n的一半所以n=10所以最小系数为负C10取5=-252

证明:(1+x)的2N次方展开式中X的N次方的系数等于(1+X)的2N-1次方展开式中X的N次方的系数的2倍.

(1+x)^2nn次方系数是(C上面n下面2n)x^n(1+x)^2n-1n次方系数是(C上面n下面2n-1)x^n(C上面n下面2n)=[(2n)*(2n-1)……(n+1)]/n阶乘=2n/n*[

已知(根号X-2/X)的n次方的展开式中,第4项和第9项的二项式系数相同,求展开式中X的一次项的系数

第4项和第9项的二项式系数相同,∴c(n,3)=c(n,8),n=11.T=c(11,r)(√x)^(11-r)*(-2/x)^r=c(11,r)*(-2)^r*x^[(11-3r)/2],依题意(1

已知(X+1/X)的N次方展开式的系数之和比(Y+根号Y)的2N次方展开式的系数之和小于56,求:

(2^2n)-2^n=56,解得:2^n=8,n=3(1):C(3,2)X.(1/X)^2=3/X(2):C(6,3)Y^3(根号Y)^3=20Y^(9/2)

已知(1+根号x)^n的展开式中第9、10、11项的二项式系数成等差数列,求n

T(r+1)=C(n,r)*a^(n-r)*b^r,(此为二项式通项公式)T(9),即有,9=r+1,r=8,(1+根号x)^n的展开式中第9、10、11项的二项式系数分别为:C(n,8),C(n,9

二项式系数的性质已知(1+X)的n次方的展开式中第4项和第8项的二项式系数相等,求这两项的二项式系数.

n=10.第四项的二次项系数是C3N,第八项是C7N,所以C3N=C7N,所以N=10.C3N=C7N=120

已知(根号x+2/x)的n次方,展开式中二项式系数和为512

展开式中二项式系数和为512,即有2^n=512,得到n=9T(r+1)=C9(r)*[x^1/2]^(9-r)*(2/x)^r=C9(r)x^(9/2-r/2-r)*2^r令9/2-r/2-r=0,

已知二项式(x-根号x分之一)的n次方展开式中第5项为常数项,则...

T(r+1)=Cn(r)*x^(n-r)*(-1/根号X)^r=Cn(r)*(-1)^r*x^(n-r-r/2)第五项是常数项,即r=4时,n-r-r/2=0得到n=6展开式中各项的二项式系数和为2^

已知(1+2x)的n次方的展开式中二次项系数最的项是第5项,求展开式中系数最大的项

展开式中第m+1项是T(m+1)=Cn取m*(2x)^m=2^m*Cn取m*x^m由已知得Cn取4最大,所以n=7所以展开式中系数=2^m*C7取m当m=5时,系数最大=672所以是672x^5,对应

已知(1+x)的n次方的展开式中存在连续三项的系数之比为3:8:4,求展开式中系数最大的项.

本体中:系数=二项式系数.Cn(r-1)/Cnr=r/(n-r+1)=3/8,Cnr/Cn(r+1)=(r+1)/(n-r)=8/14解得,n=10,r=3.n=10,一共11项.系数最大项为中间项第

已知二项式(x-1/根号X)^n展开式中的第5项为常数项,则展开式中各项的二项式系数和为

(1)杨辉三角,计算展开式系数kn11,11,2,11,3,3,11,4,6,4,11,5,10,10,5,11,6,15,20,15,6,1(2)通式表达,(a+b)^n=ki*a^(n-i)b^i

已知(1+x)n的展开式中第4项与第8项的二次项系数相等

C(n,3)=C(n,7)n=3+7=10再问:C(n,3)=C(n,7)3是什么7是什么再答:第4项,及第8项再问:那应该是C(n,4)=C(n,8)呀再答:因为第1项为C(n,0)再问:哦哦哦哦明

1.已知(1+√x)^n的展开式中第9项,第10项,第11项的二项式系数成等差数列,求n.

1.依题意得,nC8+nC10=2*(nC9)∵对于自然数k(k≤n)都有k/(n-k+1)*(kCn)=(k-1)Cn∴9/(n-8)*(9Cn)+(n-9)/10*(9Cn)=2*(9Cn)9/(

已知(1+X)^n的展开式中第5,6,7项的系数成等差数列,求展开式中系数最大的项

Cn(5)-Cn(4)=Cn(6)-Cn(5)(n-4)/5-1=(n-5)(n-4)/30-(n-4)/5n^2-21n+98=0(n-14)(n-7)=0n=14或n=7n=14时,C14(7)最