已知:AB是圆O的直径,点C为圆O上一点,连接AC并延长至D,使AC=CD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:29:59
已知:AB是圆O的直径,点C为圆O上一点,连接AC并延长至D,使AC=CD
已知AB是圆O的直径 点P是AB延长线上的一个动点过点P做圆O的切线,切点为C,∠APC的平分线交AC于点D 则∠CDP

连接OC、BC,由题意可知,BC是Rt△OPC的斜边OP上的中线,所以BC=OB=OC,则△OBC是等边三角形,∠CBO=∠COB=60°,所以在Rt△ABC和Rt△OPC中,∠CAB=∠CPO=90

已知ab是圆o的直径 do垂直于ab于点o,cd是圆o切线,切点为c,求证角dce等于角dec

参考:如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O的切线证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对

,如图,已知AB为圆O的直径,CE切圆O于点C,CD⊥AB于点D,求证CB平分∠ECD

连结AC,CE切圆O于点C=>∠ECB=∠A,AB为圆O的直径=>∠ACB=90=>∠A+∠B=90∠B+DCB=90=>∠A=∠DCB,∴∠ECB=∠DCB =&g

如图,已知AB是圆O的直径,AP是圆O的切线,A为切点,BP与圆O交于点C,D为AP的中点,求证CD为圆O切线

可以,但似乎太麻烦了.如下证明可否:连结AC、DC,∵AB是直径,∴∠ACB=90°,∴∠ACP=90°,∵D是AP中点,∴DA=DC,∴∠DAC=∠DCA,∵OA=OC,∴∠OAC=∠OCA,∴∠D

已知圆O的半径为2,以圆O的弦AB为直径作圆M,点C是圆O优弧AB上的一个动点

连接AE所以AE垂直CB因为AB=2√3所以∠AOB=120°所以角C=60°在RT三角形AEC中CE/AC=cos60°=1/2(*)而三角形CED相似于三角形CAB所以DE/AB=CE/AC由(*

已知,如图,ab是○o的直径,点p为ab延长线上一点,pc为○o切线,c为切点,bd⊥pc,

(1)连接OC,因为角DB0=角COP,又因为角COP=2倍角CBO,所以角DBC=角CBO.可以证明三角形DBC与三角形CBA相似,可以得到DB:BC=CB:BA,=>BC^2=BD*BA(2)连接

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

已知AB是圆O的直径,直线CD与圆O相切于点C,AC平分角DAB

1.证明:连接OC则OA=OC,OC⊥CD∴∠OAC=∠OCA∵AC平分∠DAO∴∠OCA=∠OAC=∠CAD∴AD‖OC∴AD⊥CD2.连接BC∵∠DAC=30°∴∠BAC=30°∵AB是直径∴∠A

已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O的直径,BD切半圆O/于点D,CE⊥AB交半圆O于点F.

1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方

已知圆O的半径为6,AB是圆O的一条直径,C是直径AB上的一点,过点C作CD垂直AB,交圆O于点D,若CD等于三倍根号3

①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+

已知AB为圆O的直径,PD切圆O于点C,交AB的延长线于点D,且CO等于CD,则角PCA=?

连接OC则OC⊥CD∵CO=CD∴∠COD=∠D=45°∴∠A=22.5°∴∠PCA=∠D+∠A=45+22.5=67.5°

已知AB是圆o的直径,AP是圆o的切线,A是切点,BP与圆o交于点C,若D为AP的中点,求证:直线CD是圆o的切线.

联结OD、OC,因D是AP的中点,O是圆心,所以OD是三角形APB的中位线,因此角ADO与角P相等,角PCDD等于角CDO,角OCB等于角DOC,角PCD加角DCA等于90°,所以角ODC加角DCO等

如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O

证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对的圆周角是直角】∴∠PCA=90º∵D是AP的中点【根据直角三角形斜边中线等于斜边的一半】∴CD=AD=DP∴∠DAC

如图,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,D为AP的中点若AB=

由勾股定理得BP=10连接AC,可证三角形ABC与PBA相似,可得BC=18/5,CP=32/5,AC=24/5过C作AP垂线,垂足为E三角形PCE与PBA相似,可得CE=96/25sinADC=CE

已知 如图 AB是⊙O的直径 点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F

1.弧CB=弧CD,CB=CD∠CAE=∠CAF,CF⊥AB于点F,∠CFA=90°,CE⊥AD的延长线于点E,∠CEA=90°,∠ACE=90°-∠CAE,∠ACF=90°-∠CAF∠ACE=∠AC

已知如图,ab是⊙o的直径,od垂直于ab,垂足为o,db交⊙o于点c

图是不是这样?如图做辅助线AC,因为△ABC是圆的内接三角形,所以角ACB是直角又因为∠B是ACB和DOB的公共角,所以RT△ABC∽RT△DOB所以AB/BC=BD/BO即2BO/BC=BD/BO&

已知PA垂直与平面ABC,AB是圆o的直径,C是圆o上的任一点

AB是圆o的直径,C是圆o上的任一点∴∠ACB=90°∴BC⊥AC∵PA垂直与平面ABC,∴PA⊥BC∴BC⊥平面PAC∵BC⊂平面PBC∴平面PAC⊥平面PBC

已知:如图,AB是半圆的直径,O为圆心,点C在圆O上,CD⊥AB于点D,若AD=2,CD=4,AB长?

说的真模糊~还不知道你今年多大...姑且认为你不是在耍人吧.嗯,说正题.连结AC,BC(这个圆里的三角形要记住.因为有很重要的结论:CD的平方等于AD乘BD,那么BD=8,则AB=10)若是大题,忽略

ab是圆O的一条弦 过点O作AB的垂线,垂足为C,已知OC等于圆O直径的四分之一 求劣弧弧AB所对的圆周角的大小

连接OA,OB因为OC等于1/4的直径,则OC等于1/2的OA又因为OC垂直AB所以∠AOC=60度(勾股定理)因为∠AOB=2∠AOC所以∠AOB=120度因为∠AOB是劣弧AB所对的圆心角又因为同