已知:△ABC内接于圆O,D是弧BC上一点,OD⊥BC,垂足为H.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:06:41
1.连接OD因为三角形ABC是直角三角形(不知道你学过没.连接OB,OB等于OC等于OA等于1/2AC所以是直角三角形.直角三角形斜边中线等于斜边一半的逆定律)所以AB平行于EF因为D为弧AB中点所以
解答要点:根据勾股定理可得FC=10连接OD,则由切线知OD⊥EF作ON⊥BC,设半径为5X,则FA=10-10X显然△OCN∽△FCE所以可得ON/OC=EF/FC=4/5所以ON=4X显然四边形O
连接OA,OC∵AB=5,CD=3∴AD=4∵AB=4√2∴∠ABC=45°∴∠AOC=90°∵OA=OC,AC=5∴OC=(5/2)√2即⊙O的半径为(5/2)√2
首先可得角B=30度,则角AOD=60度,又角D=30度,所以角OAD=90度,AO是半径,所以AD是圆O的切线.易得AOC是等边三角形,得AO=AC=6在直角三角形AOD中,角AOD=60度,得AD
(1)证明:因为sinB=1/2,所以角B=arcsin1/2=30度,所以角AOC=2角B=60度因为角D=30度,所以角DAO=90度,所以DA垂直于OA因为A是半径OA的外端,所以DA是切线(2
∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD
证明:∵BC平行DE.∴∠AED=∠ACB;又∠ADB=∠ACB.(同弧所对的圆周角相等)∴∠AED=∠ADB.(等量代换)--------------------------------------
解题思路:利用圆的切线的判定定理求证。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ
1因为∠ABC=∠ADC(同弧所对应的圆周角相等)∠CED=∠AEB(对顶角)所以△ABE与△CDE相似,根据对应边成比例得出:CD/AB=DE/BE,即CD/DE=AB/BE——式1已知DC^2=D
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=
证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线
证明:∵BC平行DE.∴∠AED=∠ACB;又∠ADB=∠ACB.(同弧所对的圆周角相等)∴∠AED=∠ADB.(等量代换)--------------------------------------
证明:1)连接OD因为DE与圆O相切于D所以DO⊥DE因为AD平分∠BAC所以弧BD=弧DC所以DO⊥BC(根据垂径定理)所以DE∥BC2)因为弧BD=弧DC所以DC=BD=2因为DE∥BC所以∠E=
解∵∠BOC=120°∴∠BAC=60°(同弧所对的圆周角等于圆心角的一半)∵AB=AC∴△ABC为等边三角形∵BD是直径∴∠BAD=90°附:对于正△ABC,圆心O既是内心,又是外心∴BD平分∠AB
证明:(1)∵内心即角平分线的交点∴∠BAD=∠CAD,∴BD=CD【相等圆周角所对的弦相等】∠ABI=∠EBI∵∠BID=∠BAD+∠ABI∠DBI=∠DBC+∠EBI∠DBC=∠CAD=∠BAD【
(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,
∵∠DAO+∠OAC+∠C=90°同弧所对圆周叫相等∴∠C=∠E又∵,∠BAD=∠CAO∴∠BAD+∠DAO+∠E=90°∴∠ABE=90°∴AE为圆O的直径