已知:三角形abc内接于圆o,d是上一点,od垂直bc,垂足为h

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:48:25
已知:三角形abc内接于圆o,d是上一点,od垂直bc,垂足为h
三角形ABC内接于圆O,已知圆O的半径为4,SIN A=5/8 求弦长 BC .

经过圆心O做线段AD垂直于BC交圆O于点D交BC于点E连接OB,OC则

已知:如图,三角形ABC内接于圆O,D为BS弧的中点,AE垂直BC于E,求证:AD平分角OAE

我也是刚刚做到这道题其实只要连接OD,OA=OD,所以等腰三角形,两角相等又D是弧BC中点,根据垂径定理推论,可知OD所在的直径垂直BC,又AE垂直BC于E,有两个直角,所以平行...接下来会了吧~~

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

1.已知三角形ABC内接于圆O,角B=60度,AC=12,则O点到AC的距离是多少.

1.画一个圆0,随意再画一个内角为60度的内接三角形.连接AO并延长与圆相交于D,连接DC,则DC垂直于AC,根据同弧所对的圆周角相等,角ADC=角B=60度,因为AC=12,所以AO=8根号3,O到

已知:四边形ABCD内接于圆O,连接AC和BD交于点E,且AC平分∠BAD.证明三角形ABC相似三角形bCE

∵∠EBC=∠CAD(同弧上的圆周角相等)=∠CAB(已知CA是角平分线),∠BCE是公共角;∴△ABC∽△BCE(三个角对应相等的二△相似).

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D

图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点

(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D

如图,已知Rt三角形ABC内接于圆o,AC是圆o直径,D是弧AB的中点,过D作BC的垂线,

解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.

三角形ABC内接于圆O中,角A=30度,BC=3

直接用正弦定理a/sinA=b/sinB=c/sinC=2R(a、b、c分别表示三角形的三边,A、B、C分别表示a、b、c三边所对的角,R表示三角形外接圆半径)BC/sinA=2R3/sin30°=2

如图,已知三角形ABC内接于圆O,AB=AC=5,BC=8,求圆O的半径长

连A0并延长交BC于M因为;AB=AC弧AB=弧AC又因为;AO过圆心所以;AM垂直并平分BC所以;BM=CM=4又因为;直角三角形BMO所以;B0的平方+MO的平方=0B的平方设半径为X(3-x)*

已知三角形ABC内接于圆O,角BAC=120度,AB=AC=6,求圆O的直径

∵∠BAC=120°且AB=AC=6且此三角形为正三角形∵△ABC内接于圆O∴连接AO∴AO⊥且平分BC∴AO=OC=BC∴BC=2*OC=2*6=12都参加工作好几年了,

已知三角形ABC内接于圆O,BC是圆O的直径,AD是三角形ABC的高,OE平行AC,OE交AB于E.

证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角

1.已知三角形ABC内接于圆O,最长边AB是圆O的内接正六边形的一边,BC是圆O 内接正八边形的一边,那么AC是圆O的内

1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边.2一个圆半径R=4,圆心距为3,

已知,三角形ABC内接于圆O,∠CAD=∠ABC,判断直线AD与圆O的位置关系

直线AD与圆O相切.证明:连接AO并延长交圆O于E,连接CE.AE为直径,则:∠ACE=90°,∠CAE+∠E=90°.∵∠E=∠ABC;∠CAD=∠ABC.∴∠CAD=∠E,故∠CAE+∠CAD=9

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直于bc与f,连接de、

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

已知三角形ABC内接于圆O,最长边AB是圆O的内接正六边形的一边,BC是圆O内接正八边形的一边,那么

1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边再问:为什么剩下15度再答:60-

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直bc 连接de df

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

什么是三角形ABC内接于圆

解题思路:三角形内接于圆,就是三角形的三个顶点都在圆上。解题过程:三角形内接于圆,就是三角形的三个顶点都在圆上。也就是说,这个圆是三角形的外接圆。最终答案:略

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B