已知:如图,A是弦BF的中点,AD⊥BC,垂足为D,AD交BF于E,联结EO

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:58:56
已知:如图,A是弦BF的中点,AD⊥BC,垂足为D,AD交BF于E,联结EO
已知如图,在四边形ABCD中,AD平行于BC,BD垂直于AD,点E,F分别是AB,CD的中点,DE=BF 求证∠A=∠C

证明:∵BD⊥AD∴∠ADB=90°∵AE=BE∴AB=2DE∵DE=BF∴AB=2BF∵AD∥BC∴∠CBD=∠ADB=90°∵DF=CF∴CD=2BF∴AB=CD∵∠ADB=∠CBD=90°AB=

1.如图,已知梯形ABCD中,AB平行CD,E是BC的中点,AE,DC的延长线相交于点F,连接AC,BF

1.①证出△ABE≌△FCE,然后得出AB=CF②平行四边形,从AB‖CF,得到∠BAF=∠CFA(内错角相等),得AC‖BF,∴四边形ACBF是平行四边形.2.平行,还是因为内错角相等.(∠BEF=

已知:如图,AD是△ABC的中线,E是AD的中点,延长CE交AB于点F.求证:AF=1/2BF

证明:过D作DM‖AF,交CE于M在△DME和△AFE中,∠DEM=∠AEF,DE=AE,∠FAE=∠MDE∴△DME≌△AFE,AF=DM;∵AD是△ABC的中线∴D是BC的中点,DM=1/2BF∴

已知:如图AD是△ABC的中线,E是AD的中点,延长CE交AB于点F.求证:AF=二分之一BF

过点D作DG//CF交AB于点G在△BFC中,∵GD//CF,BD=DC,所以GD是△BFC的中位线,所以BG=GF,同理,FE是△AGD的中位线,所以AF=FG,所以AF=FG=BG=1/2BF

已知:如图AD是△ABC的中线,E是AD的中点,延长CE交AB于点F.求证:AF=1/2BF

过D作DG‖BF,交CF于G∵BD=DC,DG‖BF∴DG是三角形BFC的中位线,DG=1/2BF∵DG‖AF,AE=ED∴△AEF≌△DEG∴AF=DG∴AF=1/2BF

如图,已知在平行四边形ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形

∵平行四边形ABCD∴AB=CD,AB‖CD∵AE=CF∴AB-AE=CD-CF即BE=DFBE‖DF∴四边形BEDF为平行四边形∴DE‖BF,BE=BF因为:M、N分别是DE、BF的中点∵ME=FN

如图,已知AB=CD,AD=CB,E、F分别是AB,CD的中点,且DE=BF,求证:①△ADE≌△CBF;②∠A=∠C.

证明:①∵E、F分别是AB,CD的中点,∴AE=12AB,CF=12CD,∵AB=CD,∴AE=CF,在△ADE和△CBF中AE=CFAD=BCDE=BF∴△ADE≌△CBF(SSS);②∵△ADE≌

已知:如图,AD是三角形ABC的中线,E是AD的中点,延长CE交AB于点F.求证:AF=1/2BF.

证明:过D作DM‖AF,交CE于M在△DME和△AFE中,∠DEM=∠AEF,DE=AE,∠FAE=∠MDE∴△DME≌△AFE,AF=DM;∵AD是△ABC的中线∴D是BC的中点,DM=1/2BF∴

如图 已知四边形ABCD中,AD=AC,角ABC=90°,E、F、G分别是AC、CD、BF的中点 求证:EG⊥BF

简单证明:连结EF、EB,由中位线定理得EF=AD/2在直角三角形ABC中,BE=AC/2(直角三角形中,斜边中线等于斜边的一半)又:AD=AC,所以:EF=BE,又G是BF的中点,所以EG⊥BF(等

如图,已知DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于G,求AG:EG的值

做DH//AC,交BG于H∠HDF=∠GEF,∠DFH=∠EFG,且DF=EF∴△HDF与△GEF全等,DH=EGDH//AC,D为AB的中点,那么DH=1/2AGAG:EG=AG:DH=AG:1/2

已知:如图,E是矩形ABCD的边CB的延长线的一点,CE=CA,F是AE的中点,求证:BF⊥FD

证明:连接BD交AC于O点,连接BF.方法一:∵AC=CE,三角形ABE为直角三角形,F为斜边AE上的中点∴CF⊥AE,且BF=AF,∠FBA=∠FAB又∵∠ABD=∠BAC∴∠FBA+∠ABD=∠F

已知如图ad是三角形abc的中线,e是ad的中点,延长ce交ab于点f,求证af=二分之一bf

关键点是做辅助线!过D点做DG平行于CF交AB于G,△BCF中,D为BC中点,则G为BF中点,△AGD中,E为AD中点,则F为AG中点,∴AF=FG=BG,AF=1/2BF证毕.

如图,已知四边形ABCD中,AD=AC,∠ABC=90°,E,F,G分别是AC,CD.BF的中点.求证EG⊥BF

参考\x0937.“你别忘记了,收购成功的前提,是你答应让我成为新的财务总监.哼哼,你敢让我公司的人都喝西北风,我就敢偷光你们公司的钱,让你们连西北风都没得喝!”

如图,已知在正方形ABCD中,E是AD的中点,BF=CD+DF,若角ABE=a°,求∠CBF的度数,(用含a的代数式表示

图形字母标错,应如上图:设正方形边长为l,DF=x,则tan a=1/2 (l+x)^2=l^2+(l-x)^2  4lx=l^2  x=i

如图 已知平行四边形ABCD中,E F 分别是AB CD 上的点,AE=CF M N 分别是DE BF 的中点 求证FM

因为AE=CF,AD=CB(平行四边形),角A=角B(平行四边形)所以三角形AED全等于三角形CFB所以DE=BF又DE=2MD,BF=2NB所以NB=ME因为三角形AED全等于三角形CFB所以角AD

已知:如图3,在四边形ABCD中,AD//BC,BD⊥AD,点E、F分别是边AB、CD的中点,DE=BF.求证:∠A=∠

AD//BC,BD⊥AD角ADB=角CBD=90度直角三角形中线等于底边的一半所以DE=BF=1/2AB=1/2CDAB=CD,BD=DB(HL定理)三角形ABD全等与三角形CDB所以角A=角C

已知如图,在四边形ABCD中,AD平行于BC,BD垂直于AD,点E,F分别是AB,CD的中点,DE=BF.求证角A=角C

设BD与EF相交于点M∵AD∥BC,AD⊥BD,E、F为AB、CD中点∴EF⊥BD于点M,且DM=BM,EF∥AD∥BC又①DE=BF可得△DEM≌△BFM(HR定理)∴∠DEF=∠BFE又∠ADE=

如图,BC是圆O的直径,AD垂直BC于D,点A是弧BF的中点,BF与AD交与E求证:

(1)证明:延长AD于圆交于点GBC为直径,且BC⊥AD,根据垂径定理,弧AB=弧BGA为弧BF中点,所以弧AF=弧AB=弧BG∠BAG和∠ABF分别为弧BG、弧AF所对圆周角因此∠BAG=∠ABF,

如图,已知正方形ABCD中,F是AD的中点,BF与AC交点G,则三角形BGC与四边形CGFD的面积之比是?

,∴你所求的比是3:5)以后遇到初中数理化难题都可以来这个网站搜搜寻找思路,题库超大,没有原题也有同类题,界面很科学哦,也可以来    的求求群“求解答初中学习