已知:如图,在矩形oabc中,oa=根号3,oc=1,沿ac将△aoc对折后

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 01:44:15
已知:如图,在矩形oabc中,oa=根号3,oc=1,沿ac将△aoc对折后
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点

提示:【1º】若A在x轴上,C在y轴上⑴依题意,得A﹙4,0﹚,C﹙0,2﹚,M﹙4,1﹚,∵直线l:经过M﹙4,1﹚,∴y=﹣1/2x+3,当y=2时,x=2,∴N﹙2,2﹚.⑵∵反比例函

如图,在平面直角坐标系中,矩形OABC的顶点坐标为(15,6),

这条直线必定把这个矩形分成两个梯形,且两梯形的高相等,因为梯形的面积为〔(上底+下底)×高〕÷2,所以两梯形的上下底和相等,设此直线与oc的交点为p(0,b),与AB的交点为q(15,5+b),则两梯

如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,c

(1)设直线DE的解析式为,∵点D,E的坐标为(0,3)、(6,0),∴解得∴.∵点M在AB边上,B(4,2),而四边形OABC是矩形,∴点M的纵坐标为2.又∵点M在直线上,∴2=.∴x=2.∴M(2

如图,在直角坐标系中,矩形OABC的定点B

1.提示:等分矩形面积的直线必过矩形的中心,即对角线的中点(7.5,3).带入直线方程,b得0.5.2.太抽象了,果断上图.显然BC"=2根号2

如图,在直角坐标系中,矩形oabc的顶点o在坐标原点,边oa在x轴上,oc在y轴上,如果矩形oA1B1C1与矩形OABc

∵矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,1/4,∴两矩形的相似比为1:2,∵B点的坐标为(6,4),∴点B′的坐标是(3,2)或(-3,-2)

如图 在直角坐标系中,矩形OABC的顶点C在x轴的负半轴上,点A在y轴正半轴上,矩形OABC的面积为32√2 ̄

连接OB交ED于P,由折叠知:DE垂直平分OB,∴PO=PB,∵OABC是矩形,∴AB∥OC,∴∠PBE=∠POD,∠PEB=∠PDO,∴ΔPBE≌ΔPOD,∴PE=PD,即P就是DE中点F,过F作F

如图,已知在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在两坐标轴上,M、N分别为AB、BC的中

(1)把M(2,2)代入反比例函数y=mx(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=4x;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),∴B点坐标为(4,2),∴N点坐

如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点顺时针旋转90°,得到矩形

由题知点B(-1,3),绕点O顺时针旋转90°后,则:A'(3,0),B'(3,1),C'(0,1)(1)、将B(-1,3)和B'(3,1)带入y=mx+n得:3=-m+n——①1=3m+n——②,①

如图,把矩形OABC放置在平面直角坐标系中,OA=6,OC=8.

因为将矩形折叠后得到折痕EF,所以CB=BE,所以AE=8-6=2,又因为OA=6,所以点E(6,2)再问:CB=BE的得到我有点儿不懂,我也查过,好像不少是(6,1.75)哎~~

已知:如图,矩形OABC放在平面直角坐标系中,O为坐标原点,点A在X轴上,点c在y轴上,且OA=5,OC=3在AB上选取

(1)OE=OA=5,则:CE=√(OE^2-OC^2)=4,BE=1.设AD=ED=X,则BD=3-X.∵BD^2+BE^2=ED^2,即(3-X)^2+1=X^2.∴X=5/3.即点D为(5,5/

如图,在平面直角坐标系中,矩形OABC的顶点O在坐标轴原点,点A,B在反比例函数y=k/x上,线段BC交X轴于点D,已知

OA直线方程:y=2x,得到AB斜率为-0.5,且过A点,得到AB直线方程为:y=-0.5x+2.5由y=-0.5x+2.5和y=k/x(将A(1,2)带入得K=2)得B(4,0.5)再问:本人才九年

如图在平面直角坐标系中,矩形OABC的顶点与顶点O坐标原点重合

(1)设直线DE的解析式为,∵点D,E的坐标为(0,3)、(6,0),∴解得∴.∵点M在AB边上,B(4,2),而四边形OABC是矩形,∴点M的纵坐标为2.又∵点M在直线上,∴2=.∴x=2.∴M(2

如图 在平面直角坐标系中 矩形oabc的顶点a

分段函数将三角形POD的面积记作S,由于网络上不好写规范,自己写哦(一)根据题意,O点应该是原点,首先求出D点,画出图.其一,三角形面积时底乘以高的一半;其二,距离等于速度乘以时间,可知(1)当t属于

好的加分!如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足 .

解:(1)|OA-2|+(OC-2√3)²=0,则OA=2,OC=2√3.即点B为(2√3,2),点C为(2√3,0).(2)AC=√(OC²+OA²)=4,即OA=AC

如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),

(1)这个可以利用两个翻折过去后,PE和PB就分别为∠OPD和∠FPA的角平分线,于是根据这两个脚相加得180,可得∠EPB为180/2=90°,这样就得:EP²+PB²=EB&#

如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(3,0),C(0,2),点P是OA

(1)证明:由翻折可知:△OPE≌△FPE,△ABP≌△DBP,∴∠OPE=∠FPE,∠APB=∠DPB,又∠OPE+∠FPE+∠APB+∠DPB=180°,∴∠EPB=∠EPF+∠DPB=∠OPE+

已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C、D的坐标分别为(9,0)

如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0〕,C(0,4〕,M是OA的中点,点P在BC边上运动.(1)当PO=PM时,点P的坐标;(2)当△OPM是

如图7,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合

(1)设直线DE的解析式为y=kx+b,∵点D,E的坐标为(0,3)、(6,0),∴,解得k=-,b=3;∴;∵点M在AB边上,B(4,2),而四边形OABC是矩形,∴点M的纵坐标为2;又∵点M在直线