已知:如图,在等边三角形ABC中,点D,E分别在AB,AC上,且BD=AE,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:59:00
∵AC=BCCD=CE∠BCD=∠ACE=120°∴△BCD∽=△ACE∴∠CBD=∠CAE∵∠CBA+∠BAC=120°∴∠CBA+∠BAC=∠DBA+∠DBC+∠BAC=∠DBA+∠CAE+∠BA
∵△ABD和△CBE中,∠ABD=∠CBE=60°,AB=CB,BD=BE∴△ABD≌△CBE∵△ABN和△CBM中,∠ABN=60°+60°=120°,∠CBM=180°-60°=120°=∠ABN
(1)图中还有相等的线段是:AE=BF=CD,AF=BD=CE.事实上,∵△ABC与△DEF都是等边三角形,∴∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD.又∵∠C
解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D
已知:△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°.已知:AF=BD=CE,∴FB=DC=EA.在△AFE和△BDF和△CED中,FB=DC=EA,AF=BD=CE,∠A=∠B=
因为BD=CE,△ABC为正△所以AB=AC,∠A=60°所以AD=AE,∠A=60°所以△ADE正三角形
1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC
没有图,我只好按照自己画的位置来证明了证明:(1)∠ACE=∠DCE+∠ACD,∠BCD=∠BCA+∠ACD∵△ABC和△CDE都是等边三角形,∴∠BCA=∠DCE=60°∴∠ACE=∠BCD在△AC
∠EOB=120°证明△BCD≌△ACE(SAS)得∠CBD=∠CAE∴∠EOB=∠BAO+∠ABO=∠BAC+∠ABC=120°(2)先证明△ACD≌△CBF(ASA)得CD=BF,∵CD=BD,∴
证明:如图所示∵△ADE是等边三角形∴∠ADE=60°又∵△ABC是等边三角形∴∠BAC=60°又∵AD是△ABC的中线∴∠DAC=30°=∠DAF∴∠AFD=90°∴AC⊥DE∵△ADE是等边三角形
再答:【有异议,再提问;没异议,请选为"满意答案",谢谢!】
BD=CE BF=CD 因为角2=角B=角C=角E=角F=60  
证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A
解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced
不妨设D,E,F分别在边AB,BC,AC上.∵△ABC,△DEF为正三角形,∴∠A=∠B=∠C=60∠EDF=∠FED=∠EFD=60∠,DE=DF=EF∴∠BDE+∠ADF=180-60=120∠A
救命当然要快点了.慢了就没命了呀.楼主正被狗追咬,跑得四脚不着地?怎么得罪它了?还是因为长得太骨感的缘故?:)
猜想首先要从特殊点猜,我们不妨设点D为AB中点,E为AC中点;连接DE,DQ,PQ;由题意,容易得出四边形ADEQ为菱形,角ADQ=30度,角ADC=90度,所以角CDQ=60度,所以角QDP=120
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S