已知:如图,点abc三点在圆o上ae平分角bac

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:06:05
已知:如图,点abc三点在圆o上ae平分角bac
已知如图,在三角形abc中,o是三角形abc两个外角的平分线的交点,求证:点o在角a的平分线上

证明:作OD⊥AB于D,OE⊥CB于E,OF⊥AC于F.∵∠OBC=∠OBD∠OCB=∠OCF∴OD=OEOE=OF∴OD=OE∴点o在角a的平分线上

如图 a,b,c三点在圆o上,角aoc=100°,求角abc

/>在优弧AC上取一点D,连接AD,CD则∠ADC=1/2∠AOC∵∠AOC=100°∴∠ADC=50°∴∠ABC=180-50=130°再问:为什么∠ABC=180-50=130°再答:圆内接四边形

已知:如图,ABC为圆O上的三点,且有弧AB=弧BC=弧CA,连接AB,BC,CA.

(1)∵弧AB=弧BC=弧CA∴∠ACB=∠BAC=∠ABC则∠ACB=∠BAC=∠ABC=π/3∴AB=BC=CA∴△ABC为等边三角形(2)设圆半径为r,连接AO,延长AO交弧BC于点D,连接BD

(2014•永州三模)如图,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与

连接OD、DE、DB,设⊙O半径为r,∵CD为⊙O切线,∴∠ODA=90°,∵BE为⊙O直径,∴∠BDE=90°,∴∠ADE=∠BDO,∵OB=OD,∴∠OBD=∠ODB,∵∠DAE=∠BAD,∴△A

已知,如图,在三角形ABC中,D是AB边上一点,圆O过D,B,C三点,∠DOC=2∠ACD=90°,求证:直线AC是圆的

2∠ACD=90°,则∠ACD=45°∠DOC=90°,且DO=CO,则三角形OCD为等腰直角三角形,∠OCD=45°则∠ACO=∠ACD+∠DCO=45°+45°=90°则直线AC是圆的切线

如图,在等边三角形abc中,ac等于九,点o在ac上,且ao等于三,点P是线段ab上一动点,连接op,加线段op绕点o逆

如图:∠AOP+∠COD+∠POD=180°(平角为180°)∠CDO+∠COD+∠C=180°(三角形内角和为180°)从而:∠AOP=180°-(∠COD+∠POD)(等量代换)∠CDO=180°

已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90.

证明:∵OD=OC,∠DOC=90°,∴∠ODC=∠OCD=45°.∵∠DOC=2∠ACD=90°,∴∠ACD=45°.∴∠ACD+∠OCD=∠OCA=90°.∵点C在圆O上,∴直线AC是圆O的切线.

如图已知a是圆o的直径,点c,d在圆o上,点e在圆o外,角eac=角abc=60度,求角adc的度数

根据圆内接四边形对角到补得:∠ADC=180°-∠ABC=120°.再问:可是没有四边形再答:AB是圆o的直径,点C,D在圆o上。再问:已经知道怎么做了,同弧所对的圆周角相等,角adc=角abc=60

已知:如图,在△ABC中,O为∠ABC、∠BCA外角的平分线的交点,那么点O在∠A的平分线上?为什么?

在作OF⊥BCOG⊥ADOH⊥AE因为角平分线上一点到叫两遍距离相等所以OF=OG=OH所以O点在角A的平分线上再问:什么意思??“作OF⊥BCOG⊥ADOH⊥AE”?再答:做辅助线OF垂直BC垂足为

已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.

(1)证明:∵OD=OC,∠DOC=90°,∴∠ODC=∠OCD=45°.∵∠DOC=2∠ACD=90°,∴∠ACD=45°.∴∠ACD+∠OCD=∠OCA=90°.∵点C在圆O上,∴直线AC是圆O的

如图,已知△ABC中,AB=AC=√5,BC=4,点O在BC边上运动,以O为圆心,OA为半径的圆与边AB交于点D(点A除

AB=AC=√5,BC=4=>cos∠ABC=(BC/2)/AB=2/√5OB=x,=>OA^2=AB^2+OB^2-2AB*OB*cos∠ABC=5+x^2-4x=>cos∠OAB=(AB^2+OA

已知:如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O.

证明:∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB),在△OBC中,∠BOC=180°-(∠OBC+∠OCB

已知:如图,锐角三角形abc的两条高,be,cd,相交于点o,且ob等于oc.判断点o是否在角b

在!你可以连接a,o因为cd垂直于ab,be垂直于ac所以角bdc=角ceb=90度,又因为角bod和角coe是对角所以相等,ob又等于oc可证出三角形bod全等于三角形coe(角角边定理),所以od

已知 如图,在等边三角形ABC中,点E在AC上,点F在BC上,且AE=CF,AF,BE相交于点O

证明:∵等边三角形ABC∴AB=AC,∠BAC=∠ACB=60∵AE=CF∴△ABE≌△CAF(SAS)∴AF=BE,∠ABE=∠CAF∴∠BOF=∠ABE+∠BAF=∠CAF+∠BAF=∠BAC=6

如图,在直角三角形中,∠ABC=90°,D是点AC的中点,圆O经过ABC三点,CB的延长线交圆O与点E,求证AE=EC

稍候!如图所示:应是“圆O经过ABD三点”证明:连结OD,则OD为△ABC的中位线,则OD//EC,△AOD中,OD=OA,∴△ACE中,AE=EC

已知:如图,圆o在△abc的三边上截弦de=fg=kh求证:点O是△ABC的内心

∵de=fg=kh∴点O到DE、FG、HK的距离相等(同圆中,相等的弦所对的弦心距相等)∴点O在∠ABC和∠ACB的平分线上,即点O是△ABC的内心.

如图,已知A,O,E三点在同一条直线上.

(1)∵射线OD平分∠AOC,射线OE平分∠BOC,∴∠COE=1/2∠BOC,∠COD=1/2∠AOC,又∠AOC+∠BOC=180°,∴∠COE+∠COD=90°,又∠COE=60°,∴∠COD=