已知:如图在四边形abcd ef,cd分别是cd和ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:05:41
首先连接FD,AF//CD所以角AFD与角CDF的和是180.五边形内角和是540,因此可以求出角C值是120.再连接AE同理角BAE与角DEA的和是180然后就可以求出角D的度数是140.六角形的内
作ER⊥AD FS⊥BC则ER=FS=√3/2 RS∥AB∥EF ERSF是等腰梯形,作RG⊥EF SH⊥EF&
⑴FD=√(FD²-CD²)=√5.FA=√(FD²-AD²)=1.CD‖AB⊥FAD.∴FAD⊥CDEF.设AG⊥FD(请在图上补G),G∈ED.则AG⊥CD
(1)证明:设AC与BD交于G,则G为AC的中点.连接EG,GH,由于H为BC的中点,故GH∥.12AB,又EF∥.12AB,∴四边形EFGH为平行四边形,∴FH∥平面EDB;(2)证明:由四边形AB
(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1
证明:(1)∵EF∥BC,AD∥BC,∴EF∥AD.在四边形ADEF中,由FA=2,AD=3,∠ADE=45°,可证得EG⊥DE,又由FA⊥平面ABCD,得AF⊥CD,∵正方形ABCD中CD⊥AD,∴
EF⊥FB,∠BFC=90°,∴BF⊥面EFCD∠DFC是二面角D-BF-C的平面角.设AB=2,则DC=2FC=√2﹙⊿BFC等腰直角﹚∠DCF=90º∴tan∠DFC=2/√2=√2⑵作
(I)设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH‖AB且GH=AB又EF‖AB且EF=AB∴EF‖GH.且EF=GH∴四边形EFHG为平行四边形.∴EG‖FH,而
A√2/3高=1/√2,体积=(1/2)(1/√2)×1×1[中段三棱柱]++(1/2)(1/√2)×1×1×(1/3)[两端合成四面体]=√2/3
从题目的条件,体积是确定的﹙祖衡定理﹚.可以在正方体中作这个图形. V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD)=1.5×2×3/3+﹙3/4﹚×3
设正六边形的中心为O(以下诸如AO等都是表示向量)则AO=AF+AB=a+b(平行四边形法则)易知BC‖=AO(平行且相等)∴BC=a+b易知CD‖=AF∴CD=bAD=2AO=2(a+b)易知BO‖
向量BC=向量AB+向量AF=向量a+向量b向量CD=向量AF=向量b向量AD=2向量AB+2向量AF=2向量a+2向量b向量BE=2向量AF=2向量b再问:有详细步骤没,大哥,我用详细点的再答:因为
已知在正六边形中,OF∥AB,∴向量FO=向量AB=向量b又∵AO∥BC,∴向量BC=向量AO=向量AF+向量FO=向量a+向量
过点A,D作BC的垂线交BC延长线于点G,点H,使四边形AGHD为矩形.过点D作EH的垂线交EH于点M,所以D点到面BCEF的距离为DM.由已知可得DH=√2/2,ED=AD=2√2,EH=√(ED�
连结OD、OE.∵∠DOE=360°6=60°,OD=OE,∴△DOE为等边三角形,∴DE=R=8cm.过点F作FG⊥AE于点G.∵正六边形ABCDEF中,∴∠AFE=∠FED=120°,EF=AF,
因为内角相等,所以内角的补角相等所以小三角形是等腰大三角形的每条边=两条小三角的腰+正六边形边长所以大三角就是等边每个角肯定是120(六边形内角和为720)连接ADBE在四边形ADEF中角E角F都是1
因为角1=角2,AC=BD,AB=BA,那么三角形ABC全等于三角形BAD,所以BC=AD=CD,角CBA=角DAB,又因为AC垂直BC,所以角ADB=角BCA=90度又因为角1=角2,所以角DAC=