已知A,B,C是圆o上的三个点,四边形OABC是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:11:56
由OP=OA+λ(AB/sinC+AC/sinB),得AP=OA-OP=λ(AB/sinC+AC/sinB),由正弦定理,|AB/sinC|=|ACsinB|,∴P的轨迹是∠BAC的平分线所在直线,一
向量符号不好打.(1)∵2AC+CB=0,∴2AC=BC(此处可画图,因为AC,BC同向,A为BC中点)∴BC=-2AB∴OC=OB+BC=OB-2AB(2)∵2AC=BC∴A为BC中点,又点D是OB
∵依题OC=OB+BC=OB+2AC=OB+2(OC-OA).∴OC=2OA-OB.故选A
先睬我吧正在做再问:你到是发答案过来啊!
∵O是原点,且是AB的中点,∴OA=OB,∵B点表示的数是x,∴A点表示的数是-x.∵B是AC的中点,∴AB=BC,∴(x2-3x)-x=x-(-x),解得:x1=0,x2=6.∵B异于原点,∴x≠0
取AB中点为M,CM是AB边上的中线,1/2(向量OA+向量OB)=向量OMOP=1/3(1/2向量OA+1/2向量OB+2向量OC)=1/3(向量OM+2向量OC)=1/3向量OM+2/3*向量OC
这个,楼主,图不清楚啊这个
再问:老师您太牛了太感谢了^_^
ABsinB和ACsinC都等于边BC上的高H,是一个数量,设为h.所以原式可变为OP=OA+λh(AB+AC)AB+AC是以AB,AC为临边的平行四边形的对角线.其必过BC中点设为D而OA+λh(A
AB+AC是以AB,AC为边画的平行四边形,得对角线AD,λ(AB+AC)使得终点P仍在AD上,即终点P在三角形ABC的BC边的中线所在直线上运动,随着λ的变化而变化,某个λ时刚好是重心,入取0.00
2AC+CB=02(OC-OA)+OB-OC=02OC-2OA+OB-OC=0OC=2OA-OB
1.结论OP∥BC是成立的∵△APO≌△CPO,∴∠APO=∠CPO∴∠APC=2∠APO∠APC和∠ABC都是弧AC对应的圆周角∴∠ABC=∠APC=2∠APO∵∠POB=∠PAO+∠APO=2∠A
不是我写我只是搬运工……通过观察,发现点O可以化没掉.具体如下:两边都×2:2OP=OB+OC+2λ(AB/|AB|cosB+AC/|AC|cosC).移项:(OP-OB)+(OP-OC)=2λ(AB
1)连接OB,AB//OC=
(1)∵A是弧BC的中点,∴AB=AC,连接OB、OA、OC,∵在△AOB和△AOC中,AB=ACOB=OAOA=OC,∴△AOB≌△AOC(SSS),∴∠CAO=∠ABO,∵AD=CE,∴AB-AD
2(OC-OA)+(OB-OC)=02OC-2OA+OB-OC=00C=2OA-OB
这个应该是向量吧?AB上方是不是还有一箭头?在三角形ABC中,AB/|AB|是指向量AB上的单位向量,也就是长度(模)为1个单位长度,方向和向量AB相同的向量,既然是这样,AB/|AB|+AC/|AC
由圆外一点向圆引的两切线长相等,所以∣BA∣=∣BD∣=6,∣CA∣=∣CE∣=12,∣PD∣=∣PE∣,所以∣PE∣=∣CE∣-∣PC∣=12-∣PC∣∣PD∣=∣PB∣-∣BD∣=∣PB∣-6因∣
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60