已知A,B,C是圆o上的三个点,四边形OABC是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:11:56
已知A,B,C是圆o上的三个点,四边形OABC是
已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/sinc+AC/sinb),则P

由OP=OA+λ(AB/sinC+AC/sinB),得AP=OA-OP=λ(AB/sinC+AC/sinB),由正弦定理,|AB/sinC|=|ACsinB|,∴P的轨迹是∠BAC的平分线所在直线,一

已知O,A,B是平面上不共线的三个点,直线AB上有一点C,满足2向量AC+向量CB=0

向量符号不好打.(1)∵2AC+CB=0,∴2AC=BC(此处可画图,因为AC,BC同向,A为BC中点)∴BC=-2AB∴OC=OB+BC=OB-2AB(2)∵2AC=BC∴A为BC中点,又点D是OB

如图,已知A、B、C是数轴上异于原点O的三个点,且O为AB的中点,B为AC的中点.若点B对应的数是x,点C对应的数是x2

∵O是原点,且是AB的中点,∴OA=OB,∵B点表示的数是x,∴A点表示的数是-x.∵B是AC的中点,∴AB=BC,∴(x2-3x)-x=x-(-x),解得:x1=0,x2=6.∵B异于原点,∴x≠0

已知A、B、C是平面上不共线的三点,O是三角形ABC的垂心,

取AB中点为M,CM是AB边上的中线,1/2(向量OA+向量OB)=向量OMOP=1/3(1/2向量OA+1/2向量OB+2向量OC)=1/3(向量OM+2向量OC)=1/3向量OM+2/3*向量OC

已知O,A,B是平面上不共线的三点,若点C满足

这个,楼主,图不清楚啊这个

已知O是平面上一定点,A,B,C,是平面上不共线的三个点,动点P满足向量OP=向量OA+λ(向量AB/ABsinB+向量

ABsinB和ACsinC都等于边BC上的高H,是一个数量,设为h.所以原式可变为OP=OA+λh(AB+AC)AB+AC是以AB,AC为临边的平行四边形的对角线.其必过BC中点设为D而OA+λh(A

已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点p满足向量OP=OA+λ(AB+AC)

AB+AC是以AB,AC为边画的平行四边形,得对角线AD,λ(AB+AC)使得终点P仍在AD上,即终点P在三角形ABC的BC边的中线所在直线上运动,随着λ的变化而变化,某个λ时刚好是重心,入取0.00

如图,已知AB是圆O的直径,点P在弧AB上(不含点A,B),把△AOP沿OP对着,点A的对应点C正好落在圆O上

1.结论OP∥BC是成立的∵△APO≌△CPO,∴∠APO=∠CPO∴∠APC=2∠APO∠APC和∠ABC都是弧AC对应的圆周角∴∠ABC=∠APC=2∠APO∵∠POB=∠PAO+∠APO=2∠A

已知O是平面上的一定点,A,B,C是平面上不共线的三个点

不是我写我只是搬运工……通过观察,发现点O可以化没掉.具体如下:两边都×2:2OP=OB+OC+2λ(AB/|AB|cosB+AC/|AC|cosC).移项:(OP-OB)+(OP-OC)=2λ(AB

已知点A、B、C是半径长为2的半圆O上的三个点,其中点A是弧BC的中点(如图),联结AB、AC,点D、E分别在弦AB、A

(1)∵A是弧BC的中点,∴AB=AC,连接OB、OA、OC,∵在△AOB和△AOC中,AB=ACOB=OAOA=OC,∴△AOB≌△AOC(SSS),∴∠CAO=∠ABO,∵AD=CE,∴AB-AD

已知点O是平面上一定点,A、B、C是平面上不共线的三点

这个应该是向量吧?AB上方是不是还有一箭头?在三角形ABC中,AB/|AB|是指向量AB上的单位向量,也就是长度(模)为1个单位长度,方向和向量AB相同的向量,既然是这样,AB/|AB|+AC/|AC

已知A,B,C是直线l上的三点,且|AB|=|BC|=6,圆O切直线l1于点A,有过B,C作圆O异于l的两切线,切点分为

由圆外一点向圆引的两切线长相等,所以∣BA∣=∣BD∣=6,∣CA∣=∣CE∣=12,∣PD∣=∣PE∣,所以∣PE∣=∣CE∣-∣PC∣=12-∣PC∣∣PD∣=∣PB∣-∣BD∣=∣PB∣-6因∣

如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点

符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60