已知a,b属于正数,a2 2分之b2=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:59:05
a+b-2根号ab=(根号a-根号b)^2>0所以a+b>2根号ab所以2根号ab/(a+b)
a>0,b>0a≠b所以a+b>2√ab所以2√ab/(a+b)
证明:ax+xx−1=a(x-1)+1x−1+1+a≥2a+1+a=(a+1)2.∵a+1>b(b>0),∴(a+1)2>b.∴恒有ax+xx−1>b成立.
a+b=1,所以a=1-b所证为:1/a+4/b=1/(1-b)+4/b>=9,该不等式通分,移项得到(3b-2)*(3b-2)>=0.成立.故,原式成立.
a²b²+b²c²>=2√(a²b²*b²c²)=2ab²cb²c²+c²a&s
^2c^2+c^2a^2+a^2b^2/a+b+c≥abc即b^2c^2+c^2a^2+a^2b^2≥abc*(a+b+c)即b^2c^2+c^2a^2+a^2b^2≥a^2bc+b^2ac+c^2a
要证ax²+by²≥(ax+by)²即证ax²+by²-(ax+by)²≥0化简ax²+by²-(a²x&su
稍等.再答:比较a/b与(a+c)/(b+c)假设a/b>(a+c)/(b+c)∵abc都是正数,∴可以得到,a(b+c)>b(a+c)即ac>bc,a>b∴当a>b时,a/b>(a+c)/(b+c)
可以先看集合A中的元素,谁能和0对应,分类:1)当a+b=0时,得b=-a,所以只能是b=1,b/a=a得a^2=1,d故a=-1,a=1(舍)2)当a=0时,有:a+b=b,b/a=1解得,a=0(
假设abc至少有一个不为正不妨设a0得b+c>0.(1)由abc>0得bc0所以ab+ca>0a(b+c)>0所以b+c
(1)a²/b+b≥2ab²/c+c≥2bc²/a+a≥2c上面3式相加得a²/b+b+b²/c+c+c²/a+a≥2a+2b+2c(a&s
(-∞,-2][2,﹢∞)当ab同号时,a/b+b/a≥2√(a/b)(b/a)≥2当且仅当a=b时,a/b+b/a=2当ab异号时,a/b+b/a≤-2√(-a/b)(-b/a)≤-2当且仅当a=-
将三个式子倒过来得到(b+c)/a=(a+c)/b=(a+b)/c每个式子加个1(a+b+c)/a=(a+b+c)/b=(a+b+c)/c即a=b=c所以k=1/2y=1/2x改成自然数没啥影响再问:
a=k(b+c)b=k(a+c)c=k(a+b)相加a+b+c=2k(a+b+c)(a+b+c)(2k-1)=0a,b,c,均为正数所以2k-1=0k=1/2所以y=1/(2x)
∵a+b+c=1原式=(a分之一+b分之一+c分之一)*(A+B+C)=3+A分之B+A分之C+B分之A+B分之C+C分之A+C分之B∵A分之B+B分之A≥2A分之C+C分之A≥2B分之C+C分之B≥
设a+b=x,b+c=y,a+c=z,那么x+y+z=2(a+b+c),2(a+b+c)/(a+b)+2(a+b+c)/(b+c)+2(a+b+c)/(a+c)=(x+y+z)/x+(x+y+z)/y
由于a^2/b+b≥2ab^2/c+c≥2bc^2/a+a≥2c上面3式相加得a^2/b+b+b^2/c+c+c^2/a+a≥2a+2b+2c(a^2/b+b^2/c+c^2/a)+(a+b+c)≥2
2(a^3+b^3+c^3)-[a^2(b+c)+b^2(a+c)+c^2(a+b)]=a^2(a-b)+a^2(a-c)+b^2(b-c)+b^2(b-a)+c^2(c-a)+c^2(c-b)=(a
(1)∵a,b>0,∴2=a+b≥2ab,解得0<ab≤1.∴ab的取值范围是(0,1];(2)由(1)可知:ab∈(0,1],令ab=t,则4t+1t≥24t•1t=4,当且仅当t=12时取等号,∴
ab∈R+均值不等式a+1/a≥2√(a*1/a)=2b+1/b≥2√(b*1/b)=2∴(a+1/a)(b+1/b)≥2*2=4