已知A,B是同阶方阵,则AB=BA
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 17:45:48
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
就是构造2n阶的矩阵D(这里用分块矩阵表示)D=|A0||CB|这是一个上三角矩阵,易得|D|=|A||B|(A、B是原来的n阶阵,O代表全零的n阶矩阵,C代表对角线上元素全部是-1,其他元素全部是0
|AB|=|A||B|=2*3=6.
设A,B分别是m*n和n*m矩阵,则AB是m级方阵,BA是n级方阵.所以m=n.
A^2+AB+B^2=0-A^2-AB=B^2A(-A-B)=B^2因为B可逆,所以:A(-A-B)B^(-1)B^(-1)=B^2B^(-1)B^(-1)=E,E为单位阵.所以A有逆(-A-B)B^
存在元素为整数的n阶方阵B,使得AB=E,即方阵A存在逆矩阵.一个方阵,存在逆矩阵的充分必要条件是行列式不为0
原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A
AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA
AB=BA可以推出对任何多项式p都有p(A)B=Bp(A)然后构造一个多项式使得p(A)=A^{1/2}即可再问:p(A)=A^{1/2}一定成立吗?怎样判断的啊再答:矩阵函数总可以用多项式代替的,证
AA*=|A|E;A*=|A|A-1(AB)*=|AB|(AB)-1=|A||B|(B-1)(A-1)={|B|B-1}{|A|A-1}=B*A*
因为矩阵B不一定可逆,如果B可逆,则由AB=B两边左乘B^(-1)就得到A=E,但是现在不知道B是否可逆,只能得到AB-B=O,即(A-E)B=O,而我们知道如果AB=O,不一定有A=O或B=O成立,
|AB|=|A||B|=|B||A|=|BA|得证
由题得︱A︱︱B︱=︱E︱=1,∵︱A︱=-5,∴︱B︱=-1/5
对的,都等于a的行列式与b的行列式的乘积再答:如果你认可我的回答,敬请及时采纳,回到你的提问页,点击我的回答,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。如果有其他问题请采纳本题
(A-I)(B-I)=AB-A-B+I=I所以A-I和B-I都不能为0,即(A-I)和(B-I)都是可逆的.
(A+B)(A+B)=AA+AB+BA+BB,由于AB=BA,所以(A+B)(A+B)=A*A+2AB+B*B
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB
A,B可逆,所以A逆,B逆存在,故B逆A逆是一个n阶方阵.直接验证:(B逆A逆)*AB=B逆*(A逆*A)*B=B逆*B=I(单位阵).类似的,AB*(B逆A逆)=I.由逆矩阵的定义,B逆A逆正是AB