已知a>0,设命题p:函数y=a^x在R上单调递减,q:函数y=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:00:55
已知a>0,设命题p:函数y=a^x在R上单调递减,q:函数y=
已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为

这类题拿到先把pq当做正确命题去算出相关数据,在根据逻辑关系去推理由已知,p:a1-x所以x-2a>1-x或x-2a1+2a/2或R(a>1/2)由已知解集为R可知x属于R,a>1/2又p和q中有且仅

设函数f(x)=lg(ax-5)的定义域为A.已知命题p:3∈A,命题q:5∈A,且p或q为真命题,p且q为假命题,求实

ax-5>0p或q为真命题3a-5>0,a>5/35a-5>0,a>1有一个成立即可所以a>1p且q为假命题a>5/3和a>1都成立,即a>5/3是假命题a

设命题p:函数F(x)是R上的减函数 命题q:函数y=lg(ax2-x+a)

如上所述,P应该是真命题,q为假命题1.01/4;所以x>1/2+1/2a或x

简单逻辑用语已知c>0,设命题p:函数y=c^x为减函数.命题q:当x>0时,不等式x+1/x>1/c恒成立.如果p或q

因为p或q为真命题,p且q为假命题,则有以下两种情况;p真q假,p假q真.当P真q假时,函数为减函数,所以0

已知a>0,设命题p:函数y=a的x次方在R上单调递减;命题q:不等式x+|x-2a|>1的解集为R.若p和q有且只有

解由命题p:函数y=a的x次方在R上单调递减则0<a<1由命题q:不等式x+|x-2a|>1的解集为R构造函数f(x)=x+|x-2a|x+x-2a=2x-2a(x≥2a)注意到f(x)=x+|x-2

已知c>0,设命题p:函数y=cx为减函数;命题q:当x∈[12

∵若命题p:函数y=cx为减函数为真命题则0<c<1当x∈[12,2]时,函数f(x)=x+1x≥2,(当且仅当x=1时取等)若命题q为真命题,则1c<2,结合c>0可得c>12∵p∨q为真命题,p∧

已知a大于0且a不等于1,设命题p函数y等于loga(x加1)在(0到正无穷大)上单调递减,命题q:曲线y等于x平方加(

已知a大于0且a不等于1,设命题p函数y等于loga(x加1)在(0到正无穷大)上单调递减,命题q:曲线y等于x平方加(2a减3)x加1与x轴交于不同的两点,若“非p且q”为真命题,求实数a的取值范围

已知c>0,设命题p:函数y=c2为减函数,命题q:当x∈[1/2,2],函数f(x)=x+1/x>1/c恒成立.如果p

解因为c>0,所以如果命题p:函数y=c2是真命题,那么0=2,当且仅当x=1/x时及x=1时函数f(x)=2所以当x∈[1/2,2],函数f(x)∈[2,5/2]>1/c所以1/c1/2又因为p或q

已知a>0,设命题p:函数f(x)=sin2x-23

∵x∈[π4,π2],2x∈[π2,π],2x-π3∈[π6,2π3],∴sin(2x-π3)≥12∴sin2x−3cos2x+2=2sin(2x−π3)+2≥3,a<sin2x−3cos2x+2在x

已知命题p:不等式ax^2-ax+1≥0的解集为R;命题q:函数y=(a-2)^x在R上单调递增.若“p∨q”为真命题,

若“p∨q”为真命题,“p∧q”为假命题那么p,q一真一假1)p真q假:命题p:不等式ax^2-ax+1≥0的解集为R为真则a=0时,1≥0符合题意a≠0时,y=ax^2-ax+1为抛物线需抛物线在x

已知函数y=Asin(wx+p)(A>0,|p|

把(-π/8,2)代入到原方程:2=2sin(-π/4+p)因为|p|

已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对∀x∈R恒成立.若p且q为假,p或

∵y=ax在R上单调递增,∴a>1;又不等式ax2-ax+1>0对∀x∈R恒成立,∴△<0,即a2-4a<0,∴0<a<4,∴q:0<a<4.而命题p且q为假,p或q为真,那么p、q中有且只有一个为真

已知命题p:函数y=log0.5(x2+2x+a)的值域为R,命题q:函数y=-(5-2a)x是减函数.若p或q为真命题

命题p为真时,即真数部分能够取到大于零的所有实数,故二次函数x2+2x+a的判别式△=4-4a≥0,从而a≤1;命题q为真时,5-2a>1⇒a<2.若p或q为真命题,p且q为假命题,故p和q中只有一个

已知a>0且a不等于1,设命题p:函数y=a^x在R上单调递减,q:不等式x+|x-2a|>1的解集为R,若p且q为假,

p:y=a^x单调递减y'=(lna)a^x<0lna<0a<1;q:x+|x-2a|>1的解集为R|x-2a|>1-x在x>1时,a为任意数,在x<1时,(x-2a)^2>(1-x)^2(2-4a)

已知a﹥0,设命题p:函数y=a^x在R上单调递减,q:设函数y=2x-2a(x≥2a)或y=2a(x﹤2a),函数y﹥

若p为真,则0=2a时y=2a>1,a>1/2;当x1,a>1/2.所以a>1/2.又因为p且q为假,p或q为真,所以当p真q假,0

已知a0且a≠1,设命题p:函数y=㏒a﹙x+1﹚在﹙0,﹢∞﹚上单调递减,命题q:曲线y=x2+﹙2a-3﹚x+1与x

前提:a>0且a≠1假设命题p为真命题,∵y=㏒a﹙x+1﹚在﹙0,﹢∞﹚上单调递减∴0<a<1假设命题q为真命题∵曲线y=x2+﹙2a-3﹚x+1与x轴交于不同的两点,∴△=(2a-3)²