已知a>=0,函数f(x)=(x^2-2ax)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:56:24
已知a>=0,函数f(x)=(x^2-2ax)
已知函数f(x)=-x+3-3a(x

当x0且a≤2/3则:0

已知函数f(x)=(x2+2x+a)/x

已知函数f(x)=(x2+2x+a)/x(1)若a=1/2,当x∈[1,+∞)时,求函数的最小值(2)当x∈[1,+∞)时,f(x)>0恒成立,求实数a的取值范围(3)当x∈[1,+∞)时,f(x)>

已知二次函数f(x)=x^2+x+a(a>0),若f(m)

f(x)=(x+1/2)+(a-1/4)>=a-1/4,由于f(m)

已知函数F[X]=a-1/|x| 求证函数在0,正无穷上是增函数

1.证明:假设x1和x2均大于0,且00即函数y=f(x)在0到正无穷大上是增函数.2.3.f(-x)=-f(x)(-x+1)(-x+a)/-x=-(x+1)(x+a)/x所以(-x+1)(-x+a)

已知二次函数f(x)=x^2+x+a(a>0).若f(m)

f(x)=x平方+x+a=x(x+1)+a∵f(m)<0∴f(m)=m(m+1)+a<0即m(m+1)<-a又∵a>0,且m<m+1∴m<0,m+1>0∵(m+1)平方≥0∴f(m+1)=(m+1)平

已知函数f(x)=lnx+a/x,当a

1、定义域为:(0,+00)当a

已知函数f(x)=x^2+a/x(x≠0,常数a∈R).

这是双钩函数,有个基本公式即f(x)=x²+a/x1、函数是奇函数证明:首先函数定义域为(-∞,0)∪(0,+∞),关于原点对称f(-x)=-x-a/x=-(x²+a/x)=-f(

已知函数f(x)=a-(1/x的绝对值) 求证:函数f(x)在(0,正无穷大)上是增函数

f(x)=a-(1/x的绝对值)当x>0时x的绝对值=x则f(x)=a-1/x设0

已知函数f(x)=4x/x+a

4x/(x+a)>=14x/(x+a)-1>=0(3x-a)/(x+a)>=0(3x-a)(x+a)>=0(x-a/3)(x+a)>=0分类讨论,若1.a>0,则x>a/3或x

已知函数f(x)=x-2/x,g(x)=a(2-lnx),a>0,

(1)对f(x)、g(x)分别求导得:f(x)'=1+2/x²;g(x)'=-a/x;根据斜率相等带入x=1得1+2=-a即a=-3;所以g(x)=-3*(2-lnx)=3lnx-6x=1时

已知二次函数f(x)=x^2+x+a(a>0)若f(m)

先把等式化成顶点式,f(x)=(x+1/2)^2-1/4+a,当x=-1/2时取到最小值,我们将x=-1/2加1,因为最低点要是加1之后大于0,那么其它点也会成立,f(1)=1+1+a>0(a>0),

设二次函数f(x)=x^2-x+a(a>0,已知f(m)

f(m+1)>0将m带入f(x)=x^2-x+af(m)=m^2-m+a<0又∵a>0∴m^2-m<0→m^2<m若m>0,得出0<m<1若m<0,得出m>1(不符,舍去)→0<m<1将m+1带入方程

已知函数f(x)=lg(x+a/x-2)

函数y=x+a/x≥2√a,a∈(0,+∞),并且此函数有一个重要性质:在(0,√a]上单调递减,在[√a,+∞)上单调递增.(这个性质的证明比较简单,你自己证)因此,若04,最小值t(a)=f(√a

已知函数f(x)=(2-a)x+1,x

这个,是两个函数吧(1)f(x)=(2-a)x+1,x

已知函数f(x)=|x+a|+|x-2|

(1)当a=-3时,f(x)≥3即|x-3|+|x-2|≥3,即①x≤23−x+2−x≥3,或②2<x<33−x+x−2≥3,或③x≥3x−3+x−2≥3.解①可得x≤1,解②可得x∈∅,解③可得x≥

已知函数f(x)=-根号a/(a^x+根号a) (a>0,a不等于1)

化简分式,通分运算就得出结果.f(x)+f(1-x)=-a^0.5/(a^x+a^0.5)-a^0.5/(a^(1-x)+a^0.5)=-a^0.5(a^(1-x)+a^0.5)+a^0.5(a^x+

已知函数f(x)=根号x,g(x)=x+a(a>0),

1.|f(x)+g(x)-1|/√(1+1)=√2,即,有f(x)+g(x)-1=2,或f(x)+g(x)-1=-2,f(x)+g(x)=3,或f(x)+g(x)=-1,(不合,舍去,a>0,X≥0)

已知函数f(x)=|x-a|-lnx(a>0)

【1解】:f(x)=|x-1|-ln[x],x>0当00,为递增函数,f(x)>f(1);所以,f(x)的最小值为f(1)=0;【2解】:当a>1,由(1)可得:(0,a]递减;[a,无穷)递增;当0