已知abc为正实数,求证a b c>根号ab 根号bc 根号ca

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:24:06
已知abc为正实数,求证a b c>根号ab 根号bc 根号ca
一道不等式证明题已知a、b、c为正实数,且ab+bc+ca=3,求证a^2+b^2+c^3+3abc≥6题没错!

这道题有错.比如取a=11/10,b=1,c=19/21;那么ab+bc+ca=3,但是a^2+b^2+c^3+3abc=1.21+1+(19/21)^3+20.9/7约等于5.937不满足≥6;所以

a,b,c为正实数,a^2+b^2+c^2=9,求证abc+1>3a

正确的题应该是:设正实数a、b、c,满足a≤b≤c,且a^2+b^2+c^2=9.证明:abc+1>3a证明:因为2bc=b^2+c^2-(c-b)^2,所以在a固定的时候(c-b)^2越大则bc越小

设a,b,c为正实数,求证1/a+1/b+1/c+abc≥2√3

证明:因为为正实数,由平均不等式可得1/a+1/b+1/c≥3倍三次根号下1/a*1/b*1/c即1/a+1/b+1/c≥3/abc∴1/a+1/b+1/c+abc≥3/abc+abc又3/abc+a

已知a,b,c为互不相等实数,求证a4+b4+c4>abc(a+b+c)

证明:a、b、c互不相等,由基本不等式,得:a^4+b^4+c^4=1/2(a^4+b^4+b^4+c^4+c^4+a^4)>1/2(2a²b²+2b²c²+2

已知abc为正实数,求证2/a+b+2/b+c+2/c+a≥9/a+b+c

【注:用柯西不等式证明】证明:【1】易知,2(a+b+c)=[(a+b)+(b+c)+(c+a)].【2】由题设及柯西不等式可得:[(a+b)+(b+c)+(c+a)]×[2/(a+b)+2/(b+c

已知abc为实数 且a方+b方+c方=ab+bc+ac求证abc

求证abc什么?再问:求证a=b=c再答:a²+b²+c²=ab+bc+ca(a²+b²+c²)-(ab+bc+ca)=02[(a²

已知abc为正实数,a+b+c=1 求证 √3a+2 +√3b+2 +√3c+2≤6

(a+b+c)^2/3≤a^2+b^2+c^2√3a+2+√3b+2+√3c+2≤√[3(3a+2+3b+2+3c+2)]=√[3(3(a+b+c)+6)]=√[3*(3+6)]=√27

已知abc为实数,a+b+c=1,求证a+b+c≥1/3

由柯西不等式,知(a+b+c)*(1^2+1^2+1^2)≥(a+b+c)^2所以a+b+c≥1/3

设abc为实数

f(x)=e^x-(ax²+bx+c)f'(x)=e^x-2ax-bf''(x)=e^x-2a∵f''(x)=e^x-2a至多只有一个根∴f'(x)=e^x-2ax-b至多只有两个根∴f(x

已知abc为正实数且abc不全相等,若a+b+c=1,求证(1/a+1)(1/b+1)(1/c+1)>8

事实上这题更好的下界不是8,应该是64因为:(1/a+1)(1/b+1)(1/c+1)=[(a+b+c)/a+1][(a+b+c)/b+1][(a+b+c)/c+1]=(b/a+c/a+1+1)(a/

已知a,b,c为互不相等的实数,求证:a^4+b^4+c^4>abc(a+b+c)

主要是利用均值不等式a^4+b^4≥2a²b²a^4+c^4≥2a²c²b^4+c^4≥2b²c²三个式子相加得a^4+b^4+c^4≥a&

(1)已知abc属于正实数,求证(a^2+a+1)(b^2+b+1)(c^2+c+1)>=27abc

(1)证明:(a-1)^2=a^2-2a+1>=0所以a^2+1>=2aa^2+a+1>=3ab^2+b+1>=3bc^2+c+1>=3c三个正的同向不等式相乘就可知(a^2+a+1)(b^2+b+1

已知a,b,c为正实数,求证:(a+b+c)/3≥三倍根号下abc

解题思路:本题根据多项式之间的乘法化简为=1/2×(a+b+c)[(a-b)²+(b-c)²+(c-a)²]的形式即可判断解题过程:证明:对于正数a、b、c,有a3+b3+c3≥3abc成立,等号当且

已知a ,b, c三个正实数,求证:(ab+a+b+1)(ab+ac+bc+c²)≥16abc

04175106811,∵ab+a+b+1=(a+1)×(b+1),ab+ac+bc+c^2=(a+c)×(b+c),∴(ab+a+b+1)(ab+ac+bc+c^2)=(a+1)(b+1)(a+c)

设abc为正实数,求证:a+b+c

由均值不等式:a+b≥2√ab及平方均值不等式:(a²+b²)/2≥[(a+b)/2]²得:(a²+b²)/(2c)+c≥2√(a²+b&#

已知abc都是正实数,求证:bc/a+ca/b+ab/c=>a+b+c

根据均值不等式,BC/A+CA/B>=2C同理AC/B+AB/C>=2ABC/A+BA/C>=2B所以2(bc/a+ca/b+ab/c)>=2(a+b+c)得证

已知abc均为正实数,且a+b+c=1,求证(1/a-1)(1/b-1)(1/c-1)大于等于8

这个题证法很多,给你两种:证法一:1/a-1=(a+b+c)/a-1=(b+c)/a≥2【√(bc)】/a1/b-1=(c+a)/b≥2【√(ca)】/b1/c-1=(a+b)/c≥2【√(ab)】/

已知abc属于正实数 且abc=1 求证(a+b)(b+c)(c+a)≥8

﹙a+b)(b+c)(c+a﹚≥﹙2√ab﹚﹙2√bc﹚﹙2√ca﹚=8abc=8

已知a,b,c属于正实数,求证(a+b+c)(a2+b2+c2)>=9abc

a+b+c≥3(abc)(1/3)即abc开三次方同理a2+b2+c2≥3(a^2b^2c^2)(1/3)则(a+b+c)(a2+b2+c2)>=3(abc)(1/3)*3(a^2b^2c^2)(1/