已知AB为圆O的直径,OC⊥AB,弦DC与OB交于点F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:27:33
(1)证明:连接OC,∵AB为⊙O的直径,CD是弦,且AB⊥CD于E,∴CE=ED,CB=DB.(2分)∴∠BCD=∠BAC.(3分)∵OA=OC,∴∠OAC=∠OCA.∴∠ACO=∠BCD.(5分)
(1)因为OA=OC所以∠ACO=∠A因为∠A∠B=90°(直径所对圆周角为直角)又因为∠BCD∠B=90°所以∠A=∠BCD连结B,D,易证∠BCD=∠BDC所以∠A=∠BDC又因为∠ACO=∠A所
证明:连接CA,CB∵OC⊥AB∴CA=CB∵AD=BE,∠CAD=∠CBE(同弧所对的圆周角相等)∴△ACD≌△BCE∴CD=CE,∠ACD=∠BCE∵AB是直径∴∠ACB=90°∵∠BCE+∠AC
证明:设AD⊥CE交点G∵公共∠A、OC⊥AB∴△AOF∽△AEG∴∠AFO=∠CEO又∵∠AFO=∠CEO、OC⊥AB、OA=OC同为半径∴△AOF≌△CEO∴OE=OF
(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆
连接CE、CF、EO、FO.因为EF平行于AB,OC垂直于AB,所以D是EF的中点.又因为D是OC的中点,所以四边形CEOF是平行四边形.又因为CO垂直于EF,所以平行四边形CEOF是菱形.所以CE=
图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=
证明:设AD⊥CE交点G∵公共∠A、OC⊥AB∴△AOF∽△AEG∴∠AFO=∠CEO又∵∠AFO=∠CEO、OC⊥AB、OA=OC同为半径∴△AOF≌△CEO∴OE=OF
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
你这题好像,说的不完整哟.比如,D为那里的任意一点是弦上?还是OC上?
设半径为2,则,OG=1,OE=2,EG=OD=√3,DB=√3+2,ED=OG=1角EBA=arctan(√3+2)=75度
因为AB是圆O的直径,点D在圆上所以∠ADB=90°又OC⊥AB所以∠EOB=∠ACB=90°又∠ABD=∠EBO所以Rt△EBO∽Rt△ABD则BO:BD=EB:AB(1)在Rt△EBO中,OB=O
1、证明:(如图)连O1、O2并延长交⊙O2于K点,连接BK则PK是圆⊙O2的直径 O1K∥AD∵∠O1AD=∠AO1
证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线
连接OD,DF⊥OF,2×OF=OC=OD,所以∠DOF=60°,因为OC⊥AB所以∠DOA=30°,因为△DOB为等腰三角形,∠DOA为外角,等于∠ODB+∠OBD,所以∠DBA=15°,因为∠CB
如图,连接O1D,∵圆O1的切线AD交OC的延长线于点E,∴O1D⊥AE,由题意知,CO=AO=2r,O1D=O1C=r,由切线长定理知,AD=AO=2r,∴AO1=根号5r,由勾股定理得,AE2=A
(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图
(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC
建议:\x09(4)多行单条件:
根号5分之16利用三角形相似性连接EA,则三角形BDO和BAE相似则:BD/AB=OB/BEBD利用勾股玄定理求得是2倍根号5则BE==AB*OB/BD=32/2倍根号5==根号5分之16