已知AB是圆,CD与圆O相切于点C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:14:29
你的证明是错误的!△OCD与△OAD全等就不够条件,根据你作的辅助线,过点O作CD的垂线,这个垂足是否是C点,这是要证明的,通常这样的证明比较麻烦.比较好理解的证明是:连结OC、AC∵AB是直径∴∠A
O点为BC的中点,连结AO,∵AB=AC,∴AO是〈A的平分线(等腰三角形三线合一),作OD⊥AB,OE⊥AC,OD=OE,(角平分线上任意一点至角两边距离相等).D是圆O与AB的切点,(过圆周垂直半
连接BC∵OA=OC∴∠BAC=∠ACO∵AC平分∠DAB∴∠DAC=∠BAC∴∠DAC=∠ACO∴AD∥OC∵CD切圆O于C∴OC⊥CD∴AD⊥CD∴∠ADC=90∵直径AB∴∠ACB=90∴△AC
1、作OE垂直于AC,AO是角平分线,所以OE=OD又圆O与AB相切,所以OD=R(半径)所以OE=R圆心到AC的距离等于半径,所以圆与AC相切设CA切⊙O'于点E,CB切⊙O'于点D,连结OO',O
取BC中点O,连结BO并延长交AD的延长线于H.易证AC/OH=CD/DO=2/3.又∵OG是中位线,∴OG=1/2AC.∴HG=2AC.由切割线定理,得:AG方=AF·AC.
1.连接OC,切线垂直,∵平分角,∴∠CAD=∠BAC,∵∠OAC=∠OCA.∴∠CAD=∠OCA,∴OC∥AD,∴∠ADC=∠OCD=90°即AD⊥CD.2.有一便于理解的方法:连接BC,过点C作C
(1)连接OC∵OC=OA∴∠CAO=∠OCA又∵CD与圆O相切∴∠OCD=90°即∠OCA+∠DCA=90°∴∠CAO+∠DCA=90°又∵AC平分∠DAB∴∠DAC=∠CAO∴∠DAC+∠DCA=
1,连接AC,AD,AB,CO因为AB是直径,CO是半径,所以AO=BO=CO,故CO将角AOB平分,易得角AOC=角COB=90度,角CAO=45度,因为AC平分角DAB,所以角DAC=角CAO=4
1.证明:连接OC则OA=OC,OC⊥CD∴∠OAC=∠OCA∵AC平分∠DAO∴∠OCA=∠OAC=∠CAD∴AD‖OC∴AD⊥CD2.连接BC∵∠DAC=30°∴∠BAC=30°∵AB是直径∴∠A
BC=10厘米∵AB‖CD,∴∠ABC+∠BCD=180,又∵AB,BC,CD分别与圆O相切,∴OB平分∠ABC,OC平分∠BCD,∴∠OBC+∠OCB=90,∴∠BOC=90,∴在RT△OBC中,B
第一题 连接OC,∵CD与圆O相切∴OC⊥CD即 ∠OCA+∠ACD=90°∵OA,OC为圆半径∴ ∠OAC=∠OCA又 CA平分∠DAB  
证:过o点作ac的垂线交ac于e点.所以角oec=90度.因为ab=ac,所以角b=角c.因为圆与ab相切,所以od垂直于ab,即角bdo=90度.因为o为bc中点,所以bo=oc由以上条件得三角形b
解题思路:主要考查你对直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)等考点的理解。解题过程:
是OP吧?连接OP,OD,∵PD=PB,OB=OD,OP是公共边∴△PDO≌△PBO∴∠POD=∠POB=∠BOD/2∵∠A=∠BOD/2∴∠A=∠POB∴AD‖OP
AB等于CD,说明圆周ACB等于圆周CBD,即圆周AC等于圆周BD,得出角BAD等于角CDA,即三角形AED为等腰三角形,得解.
连接BD交OC于E,由于AD//OC,所以BE/DE=Bo/AO=1,所以E是BD中点,因为三角形BDO是等腰三角形,所以OC垂直于BD,即使OC是BD的垂直中心线,所以CB=BD,所以三角形BCO全
证明:作DE平行于BC,交AC于E点,连接OE、AO、OD∵D为圆O切点,∴OD⊥AB∵△ABC为等腰三角形,DE‖BC∴AD=AE又∵O为BC中点,∴∠DAO=∠OAE∵AD=AE,AO=AO,∠D
这是一道关于圆的题目,下面开始证明证明:连结AE∴∠AEB=90º,∠PEB=∠EAB(弦切角定理)∵CD⊥AB,∴∠BFM=∠BAE=∠PEF∴PE=PF连接CE,ED∵∠PED=∠PCE
分析:过O作CD,AB的垂线交CD,AB于GH,则证OM=OG即可,;证明:∠OMC=∠OGC,∠MCO=∠GCO,且公共边OC相等,故△MCO≌△GCO,则OM=OG,又OH+OM=AB,OH√2=