已知AD垂直BD,ED垂直BD,AB=CD,BC=DE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 15:54:57
已知AD垂直BD,ED垂直BD,AB=CD,BC=DE
用向量法证明已知正四面体ABCD,若AB垂直CD,AD垂直BC,则AC垂直BD

令向量AB=d,向量AC=c,向量AD=d则向量CD=AD-AC=d-c,BC=AC-AB=c-b,BD=AD-AB=d-b因为AB垂直CD,AD垂直BC所以AB点乘CD=0,即b点乘(d-c)=0,

已知:如图,AB垂直BD,CD垂直BD,AD=BC.求证:(1)AB=DC,(2)AD//BC

证三角形ABD全等于三角形BCD再答:AB平行且等于CD四边形ABCD是平行四边形

已知,如图,AB垂直BD,ED垂直BD,c是BD上的一点,BC=DE,AB=cD.求证:AC垂直CE

 证明:如图,∵AB⊥BD,ED⊥BD      ∴∠B=∠D=90°     

AC与BD相交于点O.已知AD垂直BD,BC垂直AC,AC=BD,则OA=OB.

做辅助线连接AB.用角角边证明三角形ADB和三角形BCA全等,则角BAC=角ABD.在三角形AOB中等角对等边,所以OA=OB.这个说法正确.

如图,AC与BD相交于点O.已知AD垂直于BD,BC垂直于AC,AC等于BD,则OA=OB.

因为AD垂直于BD,BC垂直于AC,所以三角形ABD,和三角形ABC都是直角三角形.又因为AC=BD,AB是公共边,根据勾股定理,则AD=BCAC与BD相交于O所以角AOD等于角BOC又角ADO=角B

在四面体ABCD中已知AB垂直CD,AC垂直BD求证AD垂直BC,

过B作BE⊥CD交CD于E,过C作CF⊥BD交BD于F,令BE∩CF=O.∵CD⊥AB、CD⊥BE,AB∩BE=B,∴CD⊥平面ABE,又AO在平面ABE内,∴AO⊥CD.∵BD⊥AC、BD⊥CF,A

如图,已知AB垂直BD,ED垂直BD,AC垂直CE,且AB等于CD,求证:AC等于CE.

因为两个三角形为直角三角形,所以角A+角ACB=90°,因为AC垂直于CE,所以角ACB+角DCE=90°,所以角A=角DCE.又因为角B=角D=90°,AB=CD,所以三角形ABC全等于三角形CDE

已知四面体ABCD中,AB垂直CD,AC垂直BD,求证AD垂直BC

证明:作AO垂直平面BCD,垂足为O,则CD垂直AO,有AB垂直CD,所以CD垂直平面ABO,故CD垂直BO.同理CO垂直BD.所以O为垂心,DO垂直BC.可得BC垂直平面ADO,所以AD垂直BC

已知 如图 ,在四边形ABCD中,BD垂直于DC,AC垂直AB,E为BC的中点,角EDA=60度 求证 AD=ED

连接AE,在直角三角形ABC中,AE是斜边上的中线,所以AE=1/2BC同理,在直角三角形BCD中,DE是斜边上的中线,所以DE=1/2BC所以AE=DE可知角EAD=角ADE=60度所以三角形AAD

如图,ac于bd相交于点o,已知ad垂直于bd,bc垂直于ac,ac等于bd,则oa等于ob.请说明理由.

证:ad垂直于bd,bc垂直于ac,则角ADB=角ACB=90°而ac等于bd所以AD²=AB²-BD²=AB²-AC²=BC²即AD=BC

如图所示,已知AC垂直BC,AD垂直BD,AD=BC,CE垂直AB,DF垂直AB,垂足分别为EF,

∵AC⊥BC,AD⊥BD∴△ACB和△ADB是直角三角形∵AD=BC,AB=AB∴RT△ACB≌RT△ADB(HL)∴∠CAB=∠DBA即∠CAE=∠DBFAC=BD∵CE⊥AB,DF⊥AB∴∠AEC

已知E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上的任一点,PF垂直BE于F,PG垂直AD于G

【证明】:证明:做PQ⊥BC于Q因BE=ED∴∠EBD=∠EDB,∵BC‖AD∴∠CBD=∠EDB∴∠CBD=∠EBD∴BD为∠CBE平分线∵PF⊥BE,BP公用∴△BFP≌△BQP∴PF=PQ∵PG

证明题:如图:AB垂直BD,ED垂直BD,AB=CD,BC=DE,求证AC垂直CE

因为AB垂直BD,ED垂直BD,所以角B=角D=90度,又因为AB=CD,BC=DE,所以三角形abc全等于三角形cdb,所以角a=角ecd又因为角a+角acb=90度,所以角ecd+角acb=90度

如图,已知AB⊥BD,ED垂直BD,AB=CD,AC=AE,请你判断AC垂直于CE吗?并说明理由.

AC垂直于CE∵AB⊥BD,ED垂直BD∴∠ACB=90,∠ECD=90∵AB=CD,AC=AE∴ACB≌CED∴∠BAC=∠DCE∵∠BAC+∠ACB=90∴∠ACB+∠DCE=90∴∠ACE=90

已知四面体ABCD的棱AB垂直CD,AC垂直BD,求证:AD垂直BC.

作AO⊥平面BCD垂足为O连接BO交DC于M连接CO交BD于N由三垂线定理BM⊥DCCN⊥BDO为△BCD的垂心连接DO则DO⊥BC由三垂线定理BC⊥AD

如图,在四边形ABCD中,已知AB垂直AD,BD垂直DC,且BD平方=AB*BC.求证BD*AD=AB*DC

证明:∵AB⊥AD,BD⊥DC∴∠BAD=∠BDC=90º∵BD²=AB×BC∴BD/AB=BC/BD∴Rt⊿ABD∽Rt⊿DBC【对应直角边和斜边成比例的直角三角形相似】∴BD/