已知a大于0,fx=ax的平方-2x 1=ln[x 1]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:05:07
当x≥0时,f(x)=x^2+2x,此函数单增又函数是奇函数因此xaa^2-5a+4>0(a-4)(a-1)>0a>4或a
因为是对于a属于[-1,1]恒成立,所以应看作是关于a的函数,而在本式中可以看作是关于a的一次函数,要使得大于0恒成立,只要让a=-1,a=1都成立即可.所以x^2+2x-1>0;-x^2+2x+1>
f(x)=ax^2+(b-8)x-a-ab(a不等于0)当x属于(-3,2)时,f(x)>0当x属于(-∞,-3)或(2,+∞)时,f(x)再问:我算的是fx=3x平方-3x-18还有无穷大的情况为何
由已知,f(1)=a+b+c=0,所以c=-a-b,因此f(-2)=4a-2b+c=3(a-b).1)若b>a,3(a-b)
1、f(x)=ax^2+bx+1过(-1,0)点,则a-b+1=0=>b=a+1方程F(x)=ax^2+(a+1)x+1=0只有一个根,则△=(a+1)^2-4a=(a-1)^2=0=>a=1∴b=a
要讨论,分a>1与00.当0
/>(1)首先对f(X)求导数,得f'(x)=lnx+1根据函数式知x的取值范围为x>0当00时,即要求a≤[f(x)+1]/x所以只要a≤[f(x)+1]/x的最小值即可令g(x)=[f(x)+1]
楼主,对给点时间考虑一下哈.答案再2楼再问:嗯嗯谢谢再答:解函数fx经过配方后的fx=(x-a)^2+5-a^2,对称轴位a。因为a>1所以在定义域[1,a]中最小值出现在x=a的时候,fx=5-a^
1.代入-1得a-b+1=0又因为fx大于等于0,因为在去-1时交与0,所以b方-4a=0,两方程可求解.a=1,b=2.fx=x方+2x+12.代入fx得gx=x2+(2-k)x+1因为在-1与1之
f(x)=2ax³-3x²求导f'(x)=6ax²-6x=6x(ax-1)a>0f'(x)>0得x1/a所以fx在区间(-无穷,0)是增函数.
f(x)=x^2+1再问:可以解释一下为什么吗再答:这个函数的对称轴是x=0,而且开口方向向上,所以在(负无穷大,0)是单调递减,在x=0处取得最小值,最小值是1,满足大于0,所以这个函数满足条件
当a=0的时候f(x)=-x^2-lnxf'(x)=-2x-1/x令f'(x)=0得到=-2x-1/x=0,无解显然在(-∞,0)f'(x)>0在(0,+∞)f'(x)
答案如图所示,友情提示:点击图片可查看大图
再问:用不用分类讨论?还是对称轴就在[0,1]内?再答:不用,顶点的横坐标都给出了,一看就满足啊。
fx=1/2x^2+lnx(a∈R,a≠0)f'x=x+1/x当x>0f'x>0当x
答:f(x)是R上奇函数:f(-x)=-f(x),f(0)=0x>0,f(x)=x^2-3x+2x<0,-x>0:f(-x)=(-x)^2-3(-x)+2=x^2+3x+2=-f(x
f(x)=-b(x-a/2b)²+a²/4bf(x)
希望对你有所帮助 再问:请问当a属于(0,e)是怎样证明e平方x的平方-2分之5x大于(x+1)lnx呢?再答:我刚才还以为你 就问2问呢 嘿嘿 加油~~若可以
对函数fx求导,得到:(2ax-x^2)ae^ax+(2a-2x)e^ax=(2a^2×x-ax^2+2a-2x)e^axfx在区间(根号2,2)上单调递减,故(根号2,2)区间上有:(2a^2×x-
f(x)=(x^2+ax+4)/x>0即有x+a+4/x>0在[3,+无穷)上恒成立即有a>-(x+4/x)在[3,+无穷)上恒成立现在就是要求x+4/x的最小值,设g(x)=x+4/x>=2根号4=