已知a大于b大于c 求证a-b分之1加b-c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:18:40
已知a大于b大于c 求证a-b分之1加b-c
已知a大于0,b大于0,c大于0,求证1/a+1/b+1/c大于等于1/根号ab+1/根号bc+1/根号ac.

均值不等式1/a+1/b大于等于2*/(ab)^1/2,1/a+1/c大于等于2*/(ac)^1/2,1/b+1/c大于等于2*/(bc)^1/2相加即得.

已知,abc>0,求证,b+c/a+c+a/b+a+b/c大于等于6

(b+c)/a+(c+a)/b+(a+b)/c=b/a+c/a+c/b+a/b+a/c+b/c=(b/a+a/b)+(c/a+c/a)+(c/b+b/c)>=2+2+2>=6

已知a.b.c属于R,求证:a^4+b^4+c^4大于等于abc(a+b+c)

a^4+b^4≥2a²b²a^4+c^4≥2a²c²b^4+c^4≥2b²c²a^4+b^4+c^4≥a²b²+a&su

已知a+b+c=1,求证:a^2+b^2+c^2大于等于三分之一

由a+b+c=1得到(a+b+c)^2=1a^2+b^2+c^2+2ab+2bc+2ac=1a^+b^2+c^2=1-2ab-2bc-2ac>=1-(a^2+b^2)-(b^2+c^2)-(a^2+c

设a,b,c大于0,求证c/(a+b)+a/(b+c)+b/(c+a)大于等于3/2.

左边=(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)-3=0.5×(a+b+b+c+c+a)*[1/(a+b)+1/(b+c)+1/(c+a)]-3≥0.5×{3×

已知a,b>0,且a+b=1,求证a分1+b分1大于等于4

公式:a>0,b>0,则a+b≥2根号(ab)a分之b+b分之a≥2根号(a分之b乘以b分之a)根号(a分之b乘以b分之a)=1a分之b+b分之a≥22+a分之b+b分之a≥4再问:公式:a>0,b>

已知a+b+c大于0 ,ab+bc+ca大于0,abc大于0,求证a b c都大于0

先排序,a>b>c(可以等于,不方便打)又abc>0,若c>0,则得证,所以只有另一种情况b0,又ab+bc+ac=a(b+c)+bc>0a>-b-c所以(-b-c)(b+c)+bc=-(b^2+bc

已知abc是正数,求证a^2a*b^2b*c^2c大于等于a^(b+c)*b^(c+a)*c^(a+b)

a^2a*b^2b*c^2c---------------------------------a^(b+c)*b^(c+a)*c^(a+b)=(a/b)^a·(a/c)^a·(b/a)^b·(b/c)

已知a,b,c为实数,a+b+c大于零,ab+bc+ac大于零,abc大于零,求证:a>0,b>0,c>0

设f(X)=(x-a)(x-b)(x-c),则f(x)=x3-(a+b+c)x2+(ab+bc+ac)x-abc由已知当x

已知a大于零,b大于0,c大于0,求证a分之b+c加b分之c+a加c分之a+b大于等于6

∵a^2+b^2≥2ab,b^2+c^2≥2bc,a^2+c^2≥2ac(b+c)/a+(c+a)/b+(a+b)/c=b/a+c/a+c/b+a/b+a/c+b/c=(b/a+a/b)+(c/a+a

已知 b分之a+c=1.求证b的平方 大于等于 4ac.

把b分之a+c=1同乘b得a+c=b,所以b平方-4ac=(a+c)平方-4ac,化简a平方+c平方-2ac,用完全平方差得(a-c)平方,因为(a-c)平方大于等于0,所以b平方大于等于4ac

已知 a大于0 b 大于0 ,求证 a^3+b^2 大于等于 a^2b +ab^2

假设a=b=2,满足题目条件a>0,b>0,则a^3+b^2=8+4=12;a^2b+ab^2=8+8=16;所以a^3+b^2<a^2b+ab^2.所以,你的题目有问题.

已知a大于0,b大于0,且a+b+c=1.求证1/a+1/b+1/c大于等于9

∵b/a+a/b≥2(√b/a×√a/b)=2×1=2c/a+a/c≥2(√c/a×√a/c)=2×1=2c/b+b/c≥2(√c/b×√b/c)=2×1=2∴1/a+1/b+1/c=(a+b+c)/

已知a,b,c属于R+ 求证:(a/b+b/c+c/a)(b/a+a/c+c/b)大于等于9

思路:欲证此题,必须借助常用的不等式:a+b+c≥3*三次根号下abc,等号当且仅当a=b=c时成立.证明:(a/b+b/c+c/a)(b/a+a/c+c/b)≥3*三次根号(a/b*b/c*c/a)

已知A,B属于R,A大于B大于E,求证:B的A次方大于A的B次方

证明:构造函数f(x)=lnx/x则f'(x)=(x/x-lnx)/x^2=(1-lnx)/x^2x>e时,1-lnx