已知A是2*3的矩阵,B是3*4的矩阵,编程求A*B的结果矩阵C,并输出C矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:05:23
因为A的第一行非零,所以r(A)>=1因为AB=0,所以r(A)+r(B)再问:您好,但是解答中最后一种可能只讨论了c不等于0的情况,即当A的秩等于1.B的秩也等于1的时候.这时候k=9,因为之前讨论
记g(x)=x^3-2x^2因为A的特征值为-1,1,2所以B=g(A)=A^3-2A^2的特征值为g(-1)=-3,g(1)=-1,g(2)=0,所以|B|=(-3)*(-1)*0=0.
|λE-A|=0根为1,2,-3则|A|≠0(因为λ=0不是上面方程的根)设B是A的逆矩阵|λE-A|=0等价于|λAB-A|=0等价于|λB-E|=0(因为A是行列式不等于0)等价于|(1/λ)E-
(B*)·B=|B|E.取行列式.|B*||B|=|B|².|B|=|B*|=1BA-B=2E,左乘B*:A-E=2B*.A=2B*+E=(12)-23
5*2ac有意义则c必然是5行cb有意义则c是2列
原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A
BA-B=2E两端同时乘上B的伴随阵,B*B*BA-B*B=2B*由B*B=|B|E|B|A-|B|E=2B*对B*B=|B|E两端同取行列式得到|B|=|B*|所以|B*|A|-|B*|E=2B*从
问题1:问:为啥数组c是3行5列答:根据矩阵乘法定义,一个m╳r的矩阵A和一个r╳n的矩阵B的乘积矩阵C是一个m╳n矩阵问:这里是怎么变过来的也就是我还是不明白数组a*数组b是什么样的进行的答:根据矩
#includevoidmain(){inta[3][4],b[4][5],c[3][5];inti,j,k,l;for(i=0;i
若要A+aE可逆,只需|A+aE|≠0,即a不是-A的特征值,亦即-a不是A的特征值.因此a≠-1,-2,3即可.观察选项,只有A+E可逆,选B.
首先有三个等式(A是可逆的)A^(-1)=A*/|A|AA*=diag(|A|,|A|,|A|,|A|)=|A|E|A||A*|=|A|^n即|A*|=|A|^(n-1)本题n=4由已知ABA^(-1
等式2A^-1B=B-4E两边左乘A得2B=AB-4A所以(A-2E)(B-4E)=8E所以A-2E可逆,且(A-2E)^-1=(1/8)(B-4E).因为2B=AB-4A所以A(B-4E)=2B(B
这个要用到逆矩阵XA=B方程两边右乘A^(-1)得X=BA^(-1)
A^-1=(1/|A|)A*需要乘行列式的倒数
由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!
#includevoidmain(){floata[50][50],b[50][50],c[50][50];intn,j,k,i,l,y;printf("请输入你所需的a矩阵行数:\n");scanf
对称矩阵必可对角化.矩阵的特征多项式为(x-3)^2(x-1),特征值为3,3,1,三个特征值均大于0,为正定二次型
设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-