已知a是三阶矩阵,a1,a2,a3是线性无关的列向量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:48:05
A(a1,a2,a3)=(Aa1,Aa2,Aa3)=(a1,a2,a3)KK=10201222-1所以|A|=|K|=-9.|A||a1,a2,a3|=|A(a1,a2,a3)|=|Aa1,Aa2,A
=a1+a2+a3+a4得到特解为(1,1,1,1)0=a1-2a2+a3得到齐次解(1,-2,1,0)(只有这一个,因为A得秩是3,齐次解只能有4-3=1个)所以通解为(1,1,1,1)+α(1,-
由Ax=β的通解的形式知(1,2,-1)^T是Ax=β的解,故有a1+2a2-a3=β(1,-2,3)^T是Ax=0的基础解系,故有r(A)=3-1=2,a1-2a2+3a3=0所以a3可由a1,a2
|B|=|a1+a2,2a2|=2|a1+a2,a2|=2|a1,a2|=2|A|=2
A(a1,a2,a3)=(a1+a2,-a1+2a2-a3,a2-3a3)=(a1,a2,a3)KK=1-101210-1-3等式两边取行列式,由于|a1,a2,a3|≠0,所以|A|=|K|=-8.
题目中A∩B中所有元素之和124,(要改为A并B中所有元素之和124)a1+a4=10且a1a4为正整数,a1
答案是C特征值与特征向量必须一一对应,所以1和4就可以排除了(因为a3是属于特征值2的向量,却对应到6上面去了)又:相同特征值的特征向量的线性组合仍为这个特征向量,所以a2-a3仍是特征向量,但是不同
A(a1,a2)这是分块矩阵的乘法A看作一个只有1块的分块矩阵
因为A为正交矩阵所以A^TA=E.所以[Aa1,Aa2]=(Aa1)^T(Aa2)=a1^TA^TAa2=a1^Ta2=[a1,a2]
选项A.|a1-a2,a2-a3,a3-a1|=|a1-a2,a2-a3,a2-a1|=0B.|a1-a2,a2-a3,a3-a1|=.|a1-a2,a1-a3,a3-a1|=0选项C.|a1+2a2
我就不用你的符号表示了,太难打.向量x=a+b-c.那么x^2=((a+b-c),(a+b-c))=(a,a)+2(a,b)+(b,b)-2(a,c)-2(b,c)+(c,c)=0+2*1+(-1)-
|A+B|=|2*a1,2*a2,2*a3,(m+n)|=2^3|a1,a2,a3,(m+n)|=8*(|A|+|B|)=-8
A=(2a1+a2,a1-a2)=(a1,a2)KK=211-1|K|=-2-1=-3所以|A|=|B||K|=-3|B|=6所以|B|=-2.
只给了已知条件,求什么呢再问:求A的特征向量特征值。再问:a1a2a3线型无关。可以证明的。再问:谢谢了哈再答:A(a1,a2,a3)=(Aa1,Aa2,Aa3)=(a1,0,a1-a2+a3)=(a
|a3-2a1,3a2,a1|第1列加上第3列*2=|a3,3a2,a1|交换第1列和第3列=|a1,3a2,a3|将第2列中的3提取出来=3*|a1,a2,a3|=3*|A|=3*(-2)=-6所以
%设A和B的长度均为NC(1:2:N,:)=AC(2:2:N,:)=B%求和用sumsum(C)
线性变换记为T由已知,T(a1,a2,a3)=(a1,a2,a3)A(b1,b2,b3)=(a1,a2,a3)B,B=231342112ζ=(a1,a2,a3)(2,1,-1)^T.Tζ=T(a1,a
1.|a1+a1,a2-a2|=|2a1,0|=02.A*A+5A-4E=0(A-3E)^2+11A-13E=0(A-3E)^2+11(A-3E)+20E=0(A-3E)[(A-3E)+11E]=-2
先用已知向量的列向量写出矩阵1011100101110101再利用初等行变换第一行乘以-1加到第二行101100-1001110101再利用初等行变换第三行乘以-1加到第四行101100-100111