已知d是等边三角形的bc边上一点,把三角形abc向下折叠
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:09:43
仍平行;∵△ABC∽△EDC,∴∠ACB=∠ECD,AC/EC=BC/DC,∴∠ACD+∠BCD=∠ACE+∠ACD,∴∠BCD=∠ACE,∴△ABC∽△EDC,∴∠EAC=∠B,又∵∠ACB=∠B,
∵△ABD和△CBE中,∠ABD=∠CBE=60°,AB=CB,BD=BE∴△ABD≌△CBE∵△ABN和△CBM中,∠ABN=60°+60°=120°,∠CBM=180°-60°=120°=∠ABN
证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.∵DE=DC,∴GE
解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D
∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ACB=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌ACE∴∠CAE=∠B=60°∴∠CAE=∠ACB∴AE‖BC
证明:∵在两个正三角形中∠BCD=∠ACE=60°-∠DCABC=ACDC=EC∴△BCD≌△ACE(SAS)∴∠EAC=∠B=60°∴∠EAC=∠ACB∴AE‖BC(内错角相等,两直线平行)
证明:根据已知条件可知∠BAC=60°∠DAE=60-15+45=90°∴△DAE为等腰直角三角形AD=AE,∠DAF=∠EAF=45°∴AF为DE边上的高根据等腰直角三角形斜边上的高等于斜边的一半A
(1)因为DG‖BC所以角AGE=角CAD=60度所以AG=AD因为DE=DB,GC=DB所以DE=GC因为AG=DG所以AG+GC=DG+DE所以AC=EG因为AG=AD,角AGE=角CAD,AC=
证明:∵△ABC是等边三角形,BD⊥AC,∴∠DBE=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB是△CDE的外角,∴∠ACB=∠E+∠CDE=60°,∴∠E=30°,∴∠E=
证明:如图所示∵△ADE是等边三角形∴∠ADE=60°又∵△ABC是等边三角形∴∠BAC=60°又∵AD是△ABC的中线∴∠DAC=30°=∠DAF∴∠AFD=90°∴AC⊥DE∵△ADE是等边三角形
证明:因为等边三角形ABC中,PE⊥AB于E,所以∠EPB=30°,所以BE=BP/2,同理CD=PC/2,所以BE+CD=BP/2+PC/2=(BP+PC)/2=BC/2,所以AE+AD=(AB-B
(1)∵AB=AC,AE=CD,∠BAE=∠C=60°,在△ABE和△CAD中AE=DC∠BAE=∠CAB=AC∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,∴∠BPQ=∠ABE+∠BAP=∠
再答:【有异议,再提问;没异议,请选为"满意答案",谢谢!】
证明:延长ED到M,使DM=ED.连接CM在△EBD和△MCD中BD=CD,∠EDB=∠MDC,ED=DM∴△EBD≌△MCD.BE=CM在△EFD和△MFD中ED=MD,∠EDF=∠MDF=90°,
已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点
(1)证明:∵△ABC是等边三角形且DG∥BC∴△AGD为等边三角形∴AD=AG=GD∠BAD=∠EAG=60又DE=DC∴DE+GD=DC+AD=AB∴AB=GE∴△AGE≌△DAB(2)∵△AGE
1.因为△ABC是等边三角形所以角A=角B=角C=60因为CE=CD所以角CDE=角E又因为角C是三角形DCE的外角所以角E=角C/2=60/2=302.三角形DBE是等腰三角形因为D是AC的中点,△
连接BD,因D为AC的中点,三角形为等边的,所以角DBE等于30度,因DC=CE,所以角DEB=30度,即三角形DBE为等腰的,又因DF为垂线,即证明F为BE的中点.
第一题:1.第二题:30度或150度.