已知E.F分别是BC.CD的中点,三角形AEF的面积等于长方形面积的几分之几?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:55:36
证明:将AE与DF的交点设为O∵正方形ABCD∴∠ADC=∠C=90,AD=CD=BC∴∠DAE+∠AED=90∵E是CD的中点、F是BC的中点∴DE=CD/2,CF=BC/2∴DE=CF∴△ADE≌
在平行四边形ABCD中,AB=CD,AB∥CD∵E、F分别是AB、CD的中点∴BE=FC∴四边形BCFE是平行四边形∴EF=BC
(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).
由AB=BC=2BE(菱形邻边相等),角AEB=90度可知角BAE=30度.故角B=60度.其余三个角则可用平行四边形性质求,角D=60度,角BAD=角BCD=120度
取BD的中点O连接EO,FO则EO是△ABD的中位线,FO是△BCD的中位线∴EO=1/2AB,EO‖AB,OF=1/2CD,OF‖CD∵AB=CD∴OE=OF∴∠OEF=∠OFE∴∠OEF=∠BMF
∵AB=BCAD=CD∴BG⊥ACDG⊥AC且BG∩DG=G∴AC⊥平面BDG又∵E、F是AD、CD的中点即EF是△ADC中位线∴EF//AC且AC⊥平面BDG∴EF⊥平面BDG又EF∈平面BEF∴平
已知四边形ABCD中,AD平行BC,OB等于OCOA=ODAC=BDEF平行等于1/2ACGH平行等于1/2ACEG平行等于1/2BDFG平行等于1/2BD四边形EFGH是菱形
(1)证明:由题意可得ABCD是等腰梯形,∴∠A=∠D,在△ABE和△DCE中,AE=ED∠A=∠DAB=DC,∴△ABE≌△DCE.(2)四边形EGFH是菱形.证明:∵GF、FH是△EBC的中位线,
如图,连结AC,BDEFGH是平行四边形.由E,F,G,H分别是AB,BC,CD,DA的中点可知EF,FG,GH,EH分别是三角形ABC,BCD,CDA,ABD的中位线,由定理:三角形的中位线平行于三
连结BD,AC∵M,N,E,F分别是边AD,BC,AB,DC的中点∴MN∥=EF∥=1/2BD(中位线的性质)∴MF∥=NE∥=1/2AC∵AB=CD∴AC=BD∴MENF是菱形
图在这里传不了,你点我帐号去我百度相册看,相册封面就是标签是EFGH,也可以自己画一下连接AC,BD,取BD中点O,连接AOCO,顺次连接EFGH因为:AB=ADE、H是中点所以:在等腰三角形ABD中
证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM
菱形中∠ABE=∠ADF,AB=AD,BE=DF,边角边,△ABE≌△ADF菱形中∠BAD=∠BCD=130°,∠BAE=∠GAF=25°,∠DGC=∠EAD=130°-25°=105°,∠AHC=∠
连接AF并延长交BC延长线于点G,证△ADF≌△GCF(AAS)AD=CG,由三角形中位线可知,EF∥BC∥AD,EF=二分之BG=二分之(BC+CG)=二分之(BC+AD)看明白了吗?图片传不上去,
已知ABCD为梯形,M为AD的中点得MB=MCMBC为等腰三角形N为BC的中点E为BM的中点得EN//MC得BEN为等腰三角形,且EB=EN又EB=EM得EM=EN同理可证FM=FNMB=MCME=E
连接AC,BD∵M,E分别是AD,AB的中点∴ME是△ABD的中位线∴ME=1/2DB同理,FN=1/2DB,MF=1/2AC,NE=1/2AC∴ME=FN,MF=NE∵梯形对角线相等∴AC=DB∴M
由于AD‖BC所以∠CBO=∠ADO,∠BCO=∠DAO所以△BCO∽△DAO由于OB=OC,所以OA=OD所以AC=BD由于E,F,G,H分别是AB,BC,CD,DA边上的中点EH=FG=BD/2,
连结EF,则AB∥EF∥CD,且EF=(AB+CD)/2∴AB/EF/CD=2/3/4∴AM/MF=BM/ME=2/3,EN/NC=FN/DN=3/4,设S△ABM=4X,则S△AEN=S△BFN=6
解题思路:找线线平行解题过程:.最终答案:略