已知f(2x 1)=x² 1,求f(x)的解析式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:29:42
根据第一个条件可以求得f(x)=(4^x-1)/(4^x+1)(4^x表示4的x次方)代入第二个条件,f(x1)+f(x2)=1,整理出来一个包含(4^x1+4^x2)和4^(x1+x2)的一个等式.
^x=[1+f(x)]/[1-f(x)]---->f(x)=[1-4^x]/[1+4^x]设a=4^(x1),b=4^(x2),显然a>0,b>0.f(x1)+f(x2)=(1-a)/(1+a)+(1
2f(x)+f(1/x)=3x(1)所以2f(1/x)+f(x)=3/x(2)(1)(2)连立2[3x-2f(x)]+f(x)=3/x-3f(x)=3/x-6xf(x)=2x-1/x
(f(x1)+f(x2))/2-f((x1+x2)/2)=(2^x1+2^x2)/2-2^((x1+x2)/2)≥√(2^x1*2^x2)-2^((x1+x2)/2)(几何不等式)=0所以结论成立.
可以用求导的方法吗?再问:可以我高3再答:那就可以蛮干了。。f'(x)=(1-x)e^(-x),有f(x)极大值1,在(负无穷,1)递增,在(1,正无穷)递减,根据f(0)=f(正无穷)=0可以画草图
(f(x1)+f(x2))/2=(lgx1+lgx2)/2=log(x1*x2)^0.5f[(x1+x2)/2]=lg((x1+x2)/2)=lg(x1+x2)-lg2x1>0x2>0x1+x2>=2
条件即为当x1>x2时,f(x1)>f(x2)此为增函数,当x=1,需有f(1)=3+3a>=0-->a>=-1(3-a)x+4a为增函数需有:3-a>0-->a
当x2=0时f(x1)=f(x1)+f(0)+1f(0)=-1当x1=-x2时f(0)=f(-x2)+f(x2)+1-f(-x2)-1=f(x2)+1所以f(x)+1是奇函数
inputx,yifx1,theny=1+2xprinty
先对f(x)求导自己算不麻烦!由于x>0所以f'(x)恒为正即f(x)在定义域上是增函数所以要求f(x1*x2)最小值就是x1*x2的最小值f(x1)+f(2*x2)=1用f(x)的解析式代入,左边通
1)令y=-x则f(x)+f(-x)=f(0)令x=y=0则f(0)+f(0)=f(0)所以f(0)=0即f(x)+f(-x)=0所以f(x)是奇函数2)设x1>x2则x1-x2>0则f(
因为4^x=(1+f(x))/(1-f(x)),所以f(x)=(4^x-1)/(4^x+1)且(4^x1-1)/(4^x1+1)+(4^x2-1)/(4^x2+1)=1所以:2(4^(x1+x2)-1
不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证
由f(x1+x2)=f(x1)f(x2),得该函数类型为f(x)=b*a∧x(指数型函数)f(x)'=b(a∧x)㏑a所以f'(0)=blna=2所以a=e∧n,b=2/n所以f(x)=(2/n)e∧
不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证
f(x)是定义在(0,+∝)上的f(x-2)定义在(0,+∝)上x-2>0x>2f(8)=f(2*2*2)=f(2)+f(2)+f(2)=1+1+1=3f(x)≥3+f(x-2)=f(8)+f(x-2
解出f(x)=[4^x-1/4^x+1]求导的其导数=1+{2*4^x*(以4为底e的对数)/(4^x+1)^2}恒大于零则其在R上递增f[x1]+f[x2]=1可化简为4^(x1+x2)=3+(4^
由4^x=(1+f(x))/(1-f(x))可得f(x)=[4^x-1]/[4^x+1],再由f(x1)+f(x2)=1,带入化简得:4^(x1+x2)-3=4^x1+4^x2,此时利用基本不等式a^