已知f(x)=1 3x^3 3xf
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:02:14
2再问:你好,麻烦你能写写过程吗?我就是不明白过程!再答:设lim3xf(x)=lim[4f(x)+6]=a,则lim(3xf(x)-4f(x)-6)=a-a=0lim(3x-4)f(x)=6limf
再答:求好评
对已知式求导得f'(x)=2x+xf(x),设y=f(x),则y'=x(2+y),dy/(y+2)=xdx,∴ln(y+2)=x^2/2+c1,∴y+2=ce^(x^2/2),∴y=f(x)=ce^(
解题思路:把给出的函数求导得其导函数,在导函数解析式中取x=1可求2f′(1)的值.解题过程:最终答案:B.
∫f(x)dx=xf(x)-∫xdf(x)∫f(x)dx=xf(x)-∫xdx/√(1+x^2)df(x)=dx/√(1+x^2)f(x)=∫dx/√(1+x^2)=ln|x+√(1+x^2)|+Cx
1)f'(x)=2x+3f'(2)把x=2代入f'(2)=2*2+3f'(2)f'(2)=-22)同样的做法f‘(x)=f’(π/4)(-sinx)+cosx把x=π/4代入上式算出f'(π/4)=1
两种情况:⑴1-x^2>2x≥0解得:0≤x<√2-1⑵1-x^2>0且2x≤0解得:-1<x≤0因此x的取值范围是:(-1,√2-1)
不能因为F(X)=Xf(x)有无数个
积分与微分(求导)是互逆运算,所以xf(x)的积分再进行微分(求导)还是xf(X),微分就是求导,两边同时进行求导,自然得出结论再问:那是不是xf(x)换成其他随便什么,结果还是原来?再答:通常是的
∵(arcsinx)'=xf(x)=(1-x^2)^(-1/2)∴f(x)=[x(1-x^2)^1/2]^(-1)1/f(x)=x(1-x^2)^1/2∫1/f(x)dx=∫x(1-x^2)^1/2d
第一个式子是不是有问题啊再问:已知∫f(x)dx=x+c,则∫xf(1-x)dx=再答:首先变形令u=1-x,x=1-u,∫xf(1-x)dx=∫(u-1)f(u)du=∫uf(u)du-∫uf(u)
∵∫xf(x)dx=sinx+C∴xf(x)=(sinx)'=cosxf(x)=cosx/x
[f(x)+xf'(x)]dx=f(x)dx+xdf(x)=f(x)dx+xf(x)-f(x)dx=xf(x)+c(分布积分法)
以下答案不知道对不对,因为离开学堂很久,不知道有没有记错,仅供参考,根据题意,f'(x)=x^2+3f'(0),令x=0,则,f'(0)=3f'(0),解得f'(0)=0
中间的一什么意思?再问:就是分段函数再答:发图把再问:再问:第四题再答:等等再答:
根据条件sinx+xf(x)=x^3/3+o(x^3),而sinx=x-x^3/6+o(x^3),因此xf(x)=-x+x^3/2+o(x^3),得到f(x)=-1+x^2/2+o(x^2)f(0)=
原式=∫xdf`(x)=xf`(x)-∫f`(x)dx=xf`(x)-f(x)+Cf`(x)=xe^x-e^x/x^2所以原式=(x-1)e^x/x-e^x/x+C=(x-2)e^x/x+C
挺好的题f(xy)=xf(y)+yf(x)---(1)设y=c=常量则:f(cx)=cf(x)+f(c)x两边求导数f'(cx)*c=cf'(x)+f(c)cf'(cx)-cf'(x)=f(c)此式对
因为f(x)+xf(1-x)=x,…………①上式中把x用1-x替换,得:f(1-x)+(1-x)*f(x)=1-x,…………②上式两边同时乘以-x得:-x*f(1-x)-x(1-x)*f(x)=x^2
F'(0)=1/3*0+3*0*F'(0)=0则f(x)=1/3*x^3f'(x)=x^2则f'(1)=0(常数的导数为0)