已知f(x)=bx c分之ax平方 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:50:32
(1)由ax-1>0,且a>0得x>1/a,所以定义域为(1/a,+∞)(2)因为a>0,所以函数y=ax-1为增函数.当0
(1)函数f(x)=ax+b/1+x²是定义在(-1,1)上的奇函数且f(1/2)=2/5则有f(0)=b=0(a/2+b)/(1+1/4)=2/5即2a/(4+1)=2/5解以a=1函数解
分析:极值点导数为零,但是导数为零的点不一定是极值点;如果1/2左右两侧导函数值都为负,即都单调递减,那么它不是极值点一般判定极值点还是按照课本上列表进行判定,只有两侧单调性相反的才是极值点,否则不是
解题思路:)当a>-1/2时,讨论函数单调性2)当a=1时,若关于x的不等式f(x)≥m^2-5m-3恒成立,求m的取值范解题过程:
f'(x)=1/(x+1)+a>=2xa>=2x+1/(x+1)g(x)=2x+1/(x+1)g'(x)=2-1/(x+1)²1
∵f(x)在(0,+∞)是增函数∴当x∈(0,+∞)时,f(x)'=e^x+a>0∴a>-e^x而-e^x所以a>=-1
值域为R,即ax²-ax+1可取区间(0,+∞)上的任意值.若a=0,则ax²-ax+1变为1,f(x)=lg1=0,不满足题意,因此a≠0对于函数f(x)=ax²-ax
先求g(x)的最小值,对任意的f(x)
1、f'(x)=2x+a-1/x
解法一:∵函数f(x)=3x+ax+2在区间(-2,+∞)上单调递减,∴f′(x)=6−a(x+2)2 在区间(-2,+∞)上小于零,∴a>6,故答案为:(6,+∞).解法二:设x2>x1>
2.(1)当t>1时f(x)最小值为tlnt当0
函数f(x)=x的平方+1分之ax+b是奇函数b=0f(1)=2代入得2=a/2a=1f(x)=x/(1+x^2)再问:题不是那样的,是ax+b/x的平方+1,x的平方加一是一个整体,ax+b是分子再
偶函数,则奇次项系数为0,即b=0且定义域对称,即a-1+2a=0,得:a=1/3故f(x)=1/3*x^2+1,定义域为[-2/3,2/3]值域为:[1,31/27]
运用了加法交换定律乘法交换律乘法分配律
a=0时f(x)=-1再问:a²+4a
然后呢?再答:���再问:再问:������再答:��������再问:���ǣ��żٵ���ҵ再问:������ѧ再答:�ȵȰ�����дд再问:���ţ�лл��再答:再答:再答:再答:�����
由题设[f(x1)-f(x2)]/(x1-x2)<0.易知,在R上,函数f(x)递减,一方面,当x<0时,f(x)=a^x递减,∴0<a<1,另一方面,当x≥0时,函数f(x)=(a-3)x+4a也递
设f(x)=g(x),卷积公式:p(z)=∫±∞f(z-x)g(x)dx=∫±∞exp(-a(z-x)).exp(-ax)dx=∫±∞exp(-az)dx,当0